Watershed cuts and Combinatorial Optimization LPE-Coupure et Optimisation combinatoire

Laurent Najman¹, Jean Cousty¹, Gilles Bertrand¹,Michel Couprie¹ Camille Couprie¹, Leo Grady², Hugues Talbot¹

¹LIGM, UPE-MLV ²Siemens Corporate Research

Master Course 13 mars 2012

Outline

- Introduction
- Watershed cuts
 - Definition and consitency
 - Relative minimum spanning forests : watershed optimality
- Power Watersheds
 - A unifying framework for combinatorial optimization
 - The powerwatershed algorithm
 - Qualitative and quantitative comparison
- Conclusion and perspectives

Context

Context

• For topographic purposes, the watershed has been studied since the 19th century (Maxwell, Jordan, ...)

The family of discrete watersheds

In this talk

Problem

• Watersheds in edge-weighted graphs?

In this talk

Problem

- Watersheds in edge-weighted graphs?
- Mathematical properties ?

In this talk

Problem

- Watersheds in edge-weighted graphs?
- Mathematical properties ?
- Use of watersheds for optimization?

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Edge-weighted graph

- Let G = (V, E) be a graph.
- Let F be a map from E to \mathbb{R} .

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Image and edge-weighted graph

For applications to image analysis

- *V* is the set of *pixels*
- *E* corresponds to an *adjacency relation* on *V*, (*e.g.*, 4- or 8-adjacency in 2D)
- The altitude of *u*, an edge between two pixels *x* and *y*, represents the *dissimilarity between x and y*

• F(u) = |I(x) - I(y)|.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Regional minima

Definition

A subgraph X of G is a minimum of F (at altitude k) if :

- X is connected; and
- k is the altitude of any edge of X ; and
- the altitude of any edge adjacent to X is strictly greater than k

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Extension

a subgraph X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Extension

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Extension

a subgraph X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Extension

a subgraph X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Extension

a subgraph X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Extension

a subgraph X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Extension

a subgraph X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Extension

a subgraph X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Extension

a subgraph X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Extension

a subgraph X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Graph cut

Definition

Let X be a subgraph of G and let $S \subseteq E$ be an edge-set.

• We say that S is a (graph) cut for X if \overline{S} is an extension of X and if S is minimal for this property, i.e., if $T \subseteq S$ and \overline{T} is an extension of X, then we have T = S.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed : intuitive idea

The church of Sorbier

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed cut

Definition (drop of water principle)

Let $S \subseteq E$ be an edge-set.

We say that S is a watershed cut of F if \overline{S} is an extension of M(F) and if for any $u = \{x_0, y_0\} \in S$, there exist $\pi_1 = \langle x_0, \ldots, x_n \rangle$ and $\pi_2 = \langle y_0, \ldots, y_m \rangle$ which are two descending paths in \overline{S} such that :

- x_n and y_m are vertices of two distinct minima of F ; and
- $F(u) \ge F(\{x_0, x_1\})$ (resp. $F(u) \ge F(\{y_0, y_1\}))$, whenever π_1 (resp. π_2) is not trivial.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed cut : example

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Catchment basins by a steepest descent property

- The *altitude* of a vertex x of G, denoted by F(x), is the minimal altitude of an edge which contains x :
 - $F(x) = \min\{F(u) \mid u \in E, x \in u\}$

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Catchment basins by a steepest descent property

• The *altitude* of a vertex x of G, denoted by F(x), is the minimal altitude of an edge which contains x :

• $F(x) = \min\{F(u) \mid u \in E, x \in u\}$

Let π = ⟨x₀,..., x_l⟩ be a path in G. The path π is a path with steepest descent for F if, for any i ∈ [1, l], F({x_{i-1}, x_i}) = F(x_{i-1}).

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Catchment basins by a steepest descent property

Definition

Let S be a cut for M(F), the minima of F. We say that S is a basin cut of F if, from each point of V to M(F), there exists, in the graph induced by \overline{S} , a path with steepest descent for F.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Catchment basins by a steepest descent property

Theorem (consistency)

An edge-set $S \subseteq E$ is a basin cut of F if and only if S is a watershed cut of F.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Catchment basins by a steepest descent property

Theorem (consistency)

An edge-set $S \subseteq E$ is a basin cut of F if and only if S is a watershed cut of F.

Contribution

• As far as we know, in the literature about discrete watersheds, no similar property has ever been proved.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Relative forest

- Let X and Y be two non-empty subgraphs of G. We say that Y is a *forest relative to* X if :
 - Y is an extension of X; and
 - for any extension Z ⊆ Y of X, we have Z = Y whenever V(Z) = V(Y).

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Relative forest

- Let X and Y be two non-empty subgraphs of G. We say that Y is a *forest relative to* X if :
 - Y is an extension of X; and
 - for any extension Z ⊆ Y of X, we have Z = Y whenever V(Z) = V(Y).

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Relative forest

- Let X and Y be two non-empty subgraphs of G. We say that Y is a *forest relative to* X if :
 - Y is an extension of X; and
 - for any extension Z ⊆ Y of X, we have Z = Y whenever V(Z) = V(Y).

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Minimum spanning forest

• The weight of a forest Y is the sum of its edge weights *i.e.*, $\sum_{u \in E(Y)} F(u)$.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Minimum spanning forest

• The weight of a forest Y is the sum of its edge weights *i.e.*, $\sum_{u \in E(Y)} F(u)$.

Definition

We say that Y is a minimum spanning forest (MSF) relative to X if Y is a spanning forest relative to X and if the weight of Y is less than or equal to the weight of any other spanning forest relative to X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Minimum spanning forest : example

• If Y is a MSF relative to X, there exists a unique cut S for Y and this cut is also a cut for X;

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

- If Y is a MSF relative to X, there exists a unique cut S for Y and this cut is also a cut for X;
- In this case, we say that S is a MSF cut for X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed optimality

Theorem

An edge-set $S \subseteq E$ is a MSF cut for the minima of F if and only if S is a watershed cut of F.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Watershed optimality

Theorem

An edge-set $S \subseteq E$ is a MSF cut for the minima of F if and only if S is a watershed cut of F.

Contribution

• As far as we know, this is the first result which establishes watershed optimality.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Minimum spanning tree

• Computing a MSF \Leftrightarrow computing a minimum spanning tree

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Minimum spanning tree

- Computing a MSF \Leftrightarrow computing a minimum spanning tree
- Best algorithm [CHAZEL00] : quasi-linear time

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Minimum spanning tree

- Computing a MSF ⇔ computing a minimum spanning tree
- Best algorithm [CHAZEL00] : quasi-linear time

Problem

Can we reach a better complexity for computing watershed cuts?

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

A linear-time algorithm for watershed cuts

Result

We propose the Stream Algorithm.

- Stream Algorithm runs in linear time whatever the range of the input map
 - No need to sort
 - No need to use a hierarchical queue

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

A linear-time algorithm for watershed cuts

Result

We propose the Stream Algorithm.

- Stream Algorithm runs in linear time whatever the range of the input map
 - No need to sort
 - No need to use a hierarchical queue
- Furthermore, Stream Algorithm does not need to compute the minima as a pre-processing step.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

A linear-time algorithm for watershed cuts

Result

We propose the Stream Algorithm.

- Stream Algorithm runs in linear time whatever the range of the input map
 - No need to sort
 - No need to use a hierarchical queue
- Furthermore, Stream Algorithm does not need to compute the minima as a pre-processing step.

Contribution

To the best of our knowledge, this is the first watershed algorithm satisfying such properties

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Conclusion on watershed cuts

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Conclusion on watershed cuts

• In fact, there is more to say on watershed cuts

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

Conclusion on watershed cuts

Laurent Najman Watershed cuts and Combinatorial Optimization

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Watershed and optimization : intuitive idea

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Watershed and optimization : intuitive idea

The church of Sorbier

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Edge-weighted graph, revisited

• An image seen as a graph G = (V, E)

Image $3 \times 3 \rightarrow$ Weighted graph 3×3

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Edge-weighted graph, revisited

• An image seen as a graph G = (V, E)

Image $3 \times 3 \rightarrow$ Weighted graph 3×3

• Edges are weighted by a *similarity* measure i.e. *inversely* proportional to the image gradient

•
$$w_{ij} = F(\{x_i, x_j\}) = F(u) = \exp(-\beta(I(x_i) - I(x_j))^2).$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Edge-weighted graph, revisited

• An image seen as a graph G = (V, E)

Image $3 \times 3 \rightarrow$ Weighted graph 3×3

• Edges are weighted by a *similarity* measure i.e. *inversely* proportional to the image gradient

•
$$w_{ij} = F(\{x_i, x_j\}) = F(u) = \exp(-\beta(I(x_i) - I(x_j))^2).$$

• Seed specification :

Power Watersheds for Optimization

A unifying framework for combinatorial optimization

New framework for image segmentation

• Given $\begin{cases} \text{two real positive numbers } p \text{ and } q \\ \text{seeds for the background } B, \\ \text{seeds for the foreground } F, \end{cases}$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

New framework for image segmentation

- Given $\begin{cases} \text{two real positive numbers } p \text{ and } q \\ \text{seeds for the background } B, \\ \text{seeds for the foreground } F, \end{cases}$
- Compute *x* verifying

$$\min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_i - x_j|^q$$

Such that x(F) = 1, x(B) = 0.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

New framework for image segmentation

- Given Given two real positive numbers *p* and *q* seeds for the background *B*, seeds for the foreground *F*,
- Compute *x* verifying

$$\min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_{i} - x_{j}|^{q}$$

Such that x(F) = 1, x(B) = 0.

• Result : segmentation *s* defined $\forall i$ by $s_i = \begin{cases} 1 \text{ si } x_i \geq \frac{1}{2}, \\ 0 \text{ si } x_i < \frac{1}{2}. \end{cases}$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Graph Cuts

• Problem : compute x

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij}^{p=1} |x_i - x_j|^{q=1}$$

- Min cut / Max flow duality
- Max Flow algorithm

Graph Cuts

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

• Problem : compute x

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij} |x_i - x_j|$$

- Min cut / Max flow duality
- Max Flow algorithm

Graph Cuts

• Problem : compute *x*

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij} |x_i - x_j|$$

- Min cut / Max flow duality
- Max Flow algorithm

A unifying framework for combinatorial optimization

Graph Cuts

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

• Problem : compute x

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij} |x_i - x_j|$$

- Min cut / Max flow duality
- Max Flow algorithm

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Graph Cuts : example

- favor small boundaries
- robust to uncentered seed placement

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Graph Cuts : example

- favor small boundaries
- robust to uncentered seed placement

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Random Walker

• Combinatorial version of the Dirichlet problem

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij} (x_i - x_j)^2 \quad \leftarrow \quad u = \arg\min\int_{\Omega} |\nabla u|^2 d\Omega$$

Potentials analogy

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Random Walker

• Combinatorial version of the Dirichlet problem

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij}^{p=1} (x_i - x_j)^{q=2} \quad \leftarrow \quad u = \arg\min \int_{\Omega} |\nabla u|^2 d\Omega$$

Potentials analogy

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Random Walker

• Combinatorial version of the Dirichlet problem

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij} (x_i - x_j)^2 \quad \leftarrow \quad u = \arg\min\int_{\Omega} |\nabla u|^2 d\Omega$$

Potentials analogy

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Random Walker

• Combinatorial version of the Dirichlet problem

$$x = \arg\min \sum_{e_{ij} \in E} w_{ij} (x_i - x_j)^2 \quad \leftarrow \quad u = \arg\min \int_{\Omega} |\nabla u|^2 d\Omega$$

• Potentials analogy

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Random Walker : example

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Shortest path forest

- take the inverse of the weights
- the shortest path starting from each node to reach a seed node is computed
- Dijsktra algorithm
- [Sinop et al. 07] :

$$\lim_{p=q\to\infty} \bar{x}_{pq} = \min_{x} \sum_{e_{ij}\in E} w_{ij}^{p=q} (x_i - x_j)^q$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Shortest path forest

- take the inverse of the weights
- the shortest path starting from each node to reach a seed node is computed
- Dijsktra algorithm
- [Sinop et al. 07] :

$$\lim_{p=q\to\infty} \bar{x}_{pq} = \min_{x} \sum_{e_{ij}\in E} w_{ij}^{p=q} (x_i - x_j)^q$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Shortest path forest

- take the inverse of the weights
- the shortest path starting from each node to reach a seed node is computed
- Dijsktra algorithm
- [Sinop et al. 07] :

$$\lim_{p=q\to\infty} \bar{x}_{pq} = \min_{x} \sum_{e_{ij}\in E} w_{ij}^{p=q} (x_i - x_j)^q$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Shortest path forest : example

 Very sensitive to the object centering relatively to the seeds

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Maximum Spanning Forest (MSF)

- maximize the sum of weights over the edges of a forest spanning the graph
- different labeled nodes have to belong to different trees
- Kruskal, Prim algorithms

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Maximum Spanning Forest (MSF) : example

- robust to small seeds
- leaking effect

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms deriving from values of p et q

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest [Allène et al. 07]
2	ℓ₂-norm Voronoi	Random walker	Max Spanning Forest [Couprie et al. 09]
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path Forest [Sinop et al. 07]

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms deriving from values of p et q

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest [Allène et al. 07]
2	ℓ₂-norm Voronoi	Random walker	Max Spanning Forest [Couprie et al. 09]
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path Forest [Sinop et al. 07]

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms deriving from values of p et q

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest [Allène et al. 07]
2	ℓ₂-norm Voronoi	Random walker	Max Spanning Forest [Couprie et al. 09]
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path Forest [Sinop et al. 07]

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms deriving from values of p et q

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest [Allène et al. 07]
2	ℓ₂-norm Voronoi	Random walker	Max Spanning Forest [Couprie et al. 09]
∞	ℓ_1 -norm Voronoi	ℓ1-norm Voronoi	Shortest Path Forest [Sinop et al. 07]

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms deriving from values of p et q

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest [Allène et al. 07]
2	ℓ₂-norm Voronoi	Random walker	Max Spanning Forest [Couprie et al. 09]
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path Forest [Sinop et al. 07]

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms deriving from values of p et q

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest [Allène et al. 07]
2	ℓ₂-norm Voronoi	Random walker	Max Spanning Forest [Couprie et al. 09]
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path Forest [Sinop et al. 07]

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms deriving from values of p et q

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest [Allène et al. 07]
2	ℓ₂-norm Voronoi	Random walker	Max Spanning Forest [Couprie et al. 09]
∞	ℓ_1 -norm Voronoi	ℓ ₁ -norm Voronoi	Shortest Path Forest [Sinop et al. 07]

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithm for the case $p = \infty$, variable q

$$\bar{x}_q = \lim_{p \to \infty} x_{p,q}^*$$

Power watershed algorithm (outline)

Build an MSF outside of plateaus, and optimize on plateaus

$$\sum_{e_{ij} \in \mathsf{plateau}} |x_i - x_j|^q$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithm for the case $p = \infty$, variable q

e

$$\bar{x}_q = \lim_{p \to \infty} x_{p,q}^*$$

Power watershed algorithm (outline)

Build an MSF outside of plateaus, and optimize on plateaus

$$\sum_{ij \in \mathsf{plateau}} |x_i - x_j|^q$$

Theorem (Convergence)

If q > 1, the potential \bar{x}_{pq} converges, as $p \to \infty$, towards the potential \bar{x}_q obtained by the Power Watershed algorithm.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Convergence of RW when $p \rightarrow \infty$ towards PW

Input seeds

PowerWatershed q = 2

Random Walker p = 1...30

Random Walker p = 30

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Theorems

Theorem (MSF cut)

The cut obtained by the Powerwatershed algorithm is a MSF cut.

Theorem (Watershed cut)

The cut obtained by the Powerwatershed algorithm is a watershed cut of the graph morphologically reconstructed from the seeds.

Theorem (Uniqueness)

When q > 1, the solution x^* to the minimization of

$$\lim_{p\to\infty}\min_{x}\sum_{e_{ij}\in E}w_{ij}{}^{p}|x_{i}-x_{j}|^{q}$$

is unique.

(Thus, when q > 1, the solution \bar{x} of the Powerwatershed algorithm is unique.)

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Powerwatershed (q=2) : example

- robust to small seeds size
- less leaking than with standard Maximum Spanning Forest

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Powerwatershed (q=2) : example

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Powerwatershed (q=2) : example

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Generality of the framework

• Possibility to add unary terms to the energy function

$$\min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_i - x_j|^q$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Generality of the framework

• Possibility to add unary terms to the energy function

$$\min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_{i} - x_{j}|^{q} + \sum_{v_{i}} w_{F_{i}}{}^{p} |x_{i} - 1|^{q} + \sum_{v_{i}} w_{B_{i}}{}^{p} |x_{i}|^{q}$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Generality of the framework

• Possibility to add unary terms to the energy function

$$\min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_{i} - x_{j}|^{q} + \sum_{v_{i}} w_{F_{i}}{}^{p} |x_{i} - 1|^{q} + \sum_{v_{i}} w_{B_{i}}{}^{p} |x_{i}|^{q}$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Generality of the framework

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Generality of the framework

Contribution

To the best of our knowledge, this is the first time that watershed is used in other applications than seeded segmentation

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Optimal multilabels segmentation

- More than 2-labels segmentation : NP-hard for Graph cuts
- Exact $n \ge 2$ labels segmentation for the other algorithms :
- *n* solutions $x^1, x^2, ..., x^n$ computed
- x^k computed by enforcing $\begin{cases} x^k(n^k) = 1\\ x^k(n^q) = 0 \text{ for all } q \neq k. \end{cases}$
- Each node *i* is affected to the label for which x_i^k is maximum :

$$s_i = \arg\max_k x_i^k$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms behavior on plateaus

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms behavior on plateaus

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms behavior on plateaus

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Algorithms comparison

- Evaluation on Berkeley database
- Ground truths
- 2 sets of seeds to study robustness to seeds centering :
 - well centered seeds
 - less centered seeds

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Quantitative Results

Dice coeff. between ground truths and the algorithms results on Berkeley database with the centered seeds.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Examples

Input seeds

Shortest Paths

Max Spanning Forests

Random Walker

Power Watersheds q = 2

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Quantitative Results

Dice coeff. between ground truths and the algorithms results on Berkeley database with the less centered seeds.

Examples

Input seeds

Shortest Paths

Max Spanning Forests

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Random Walker

Power Watersheds q = 2

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Computation time 2D

Computation times 2D

Laurent Najman Watershed cuts and Combinatorial Optimization

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Computation time 3D

Computation times 3D

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Which algorithm to use?

- Graph Cuts :
 - good fit for 2D image segmentation in 2 labels
 - too slow for 3D segmentation
- Shortest Paths : segmentation of well centered seeds around the object
- Random Walker :
 - efficient with uncentered seeds
 - defined behavior on plateaus
- Max SF :
 - better segmentations than SPF with uncentered seeds
 - fast \rightarrow 3D segmentation
- Powerwatershed q = 2 :
 - MaxSF properties
 - less sensitive to leaking than standard MaxSF

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Conclusion

• New framework unifying Graph Cuts, Random Walker, MSF and SPF.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Conclusion

- New framework unifying Graph Cuts, Random Walker, MSF and SPF.
- New optimization algorithms family with variable q.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Conclusion

- New framework unifying Graph Cuts, Random Walker, MSF and SPF.
- New optimization algorithms family with variable q.
- The q = 2 algorithm shows segmentation improvement while retaining watershed speed.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Conclusion

- New framework unifying Graph Cuts, Random Walker, MSF and SPF.
- New optimization algorithms family with variable q.
- The q = 2 algorithm shows segmentation improvement while retaining watershed speed.
- Unary terms formulation makes powerwatersheds useful beyond segmentation.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Conclusion

- New framework unifying Graph Cuts, Random Walker, MSF and SPF.
- New optimization algorithms family with variable q.
- The q = 2 algorithm shows segmentation improvement while retaining watershed speed.
- Unary terms formulation makes powerwatersheds useful beyond segmentation.

Contribution

The power watershed leads to a multilabel, scale and contrast invariant, unique global optimum obtained in practice in quasi-linear time

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

Conclusion

- New framework unifying Graph Cuts, Random Walker, MSF and SPF.
- New optimization algorithms family with variable q.
- The q = 2 algorithm shows segmentation improvement while retaining watershed speed.
- Unary terms formulation makes powerwatersheds useful beyond segmentation.

Contribution

The power watershed leads to a multilabel, scale and contrast invariant, unique global optimum obtained in practice in quasi-linear time

Anisotropic filtering Surface reconstruction

Non-convex diffusion using power watersheds

• Anisotropic diffusion [Perona-Malik 1990]

Image 100 iterations 200 iterations

Goals of this work :

- \bullet perform anisotropic diffusion using an ℓ_0 norm to avoid the blurring effect
- optimize a non convex energy using Power Watershed [Couprie-Grady-Najman-Talbot, ICIP 2010]

Anisotropic filtering Surface reconstruction

Anisotropic diffusion and ℓ_0 norm

Leads to piecewise constant results Original image PW result

Anisotropic filtering Surface reconstruction

Surface reconstruction from a noisy set of dots

• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Anisotropic filtering Surface reconstruction

Surface reconstruction from a noisy set of dots

• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Anisotropic filtering Surface reconstruction

Surface reconstruction from a noisy set of dots

• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Anisotropic filtering Surface reconstruction

Surface reconstruction from a noisy set of dots

• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Anisotropic filtering Surface reconstruction

How to solve this problem

- Graph : 3D grid
- Here *x* represents the object indicator to recover.

$$\bar{x} = \lim_{p \to \infty} \arg \min_{x} \sum_{e_{ij} \in E} w_{ij}{}^{p} |x_i - x_j|^q$$

s.t. $x(F) = 1, \ x(B) = 0$

• weights : distance function from the set of dots to fit

Why PW are a good fit for this problem?

numerous plateaus around the dots to fit \rightarrow smooth isosurface is obtained

Power watershed solution

Perspectives

Anisotropic filtering Surface reconstruction

Future work

• Study of the different energies possibly minimized in this framework

Anisotropic filtering Surface reconstruction

Some papers on watershed cuts

Bibliography on watershed cuts

Cousty, J., Bertrand, B., Najman, L. and Couprie, M. : Watershed cuts : minimum spanning forests and the drop of water principle.

IEEE Transactions on PAMI, 31(8) :1362–1374, Aug. 2009.

Cousty, J., Bertrand, G., Najman, L. and Couprie, M. : Watershed cuts : thinnings, shortest-path forests and topological watersheds.

IEEE Transactions on PAMI, 32(5) :925-939, May 2010

Anisotropic filtering Surface reconstruction

Some papers on Power watersheds

Bibliography on powerwatersheds

- Couprie, C., Grady, L., Najman, L. and Talbot, H. : Power Watersheds : A Unifying Graph Based Optimization Framework.
 IEEE Transactions on PAMI, 33(7) :1384-1399, July 2011.
- C. Couprie, X. Bresson, L. Najman, H. Talbot and L. Grady : Surface reconstruction using Power watersheds. In *Proc. of ISMM 2011.*
- C. Couprie, L. Grady, L. Najman, and H. Talbot : Anisotropic diffusion using power watersheds. In *Proc. of ICIP 2010*.
- Couprie, C., Grady, L., Najman, L. and Talbot, H. : Power watersheds : A new image segmentation framework extending graph cuts, random walker and optimal spanning forest.
 - In Proc. of ICCV, pages 731–738, Sept. 2009.

Questions

Source code available from

http://sourceforge.net/projects/powerwatershed/

Laurent Najman Watershed cuts and Combinatorial Optimization

Surface reconstruction