# Watershed cuts and Combinatorial Optimization LPE-Coupure et Optimisation combinatoire

### Laurent Najman<sup>1</sup>, Jean Cousty<sup>1</sup>, Gilles Bertrand<sup>1</sup>,Michel Couprie<sup>1</sup> Camille Couprie<sup>1</sup>, Leo Grady<sup>2</sup>, Hugues Talbot<sup>1</sup>

<sup>1</sup>LIGM, UPE-MLV <sup>2</sup>Siemens Corporate Research

Master Course 13 mars 2012

## Outline

- Introduction
- Watershed cuts
  - Definition and consitency
  - Relative minimum spanning forests : watershed optimality
- Power Watersheds
  - A unifying framework for combinatorial optimization
  - The powerwatershed algorithm
  - Qualitative and quantitative comparison
- Conclusion and perspectives

## Context



## Context



• For topographic purposes, the watershed has been studied since the 19th century (Maxwell, Jordan, ...)























## The family of discrete watersheds



## In this talk

### Problem

• Watersheds in edge-weighted graphs?

## In this talk

### Problem

- Watersheds in edge-weighted graphs?
- Mathematical properties ?

## In this talk

#### Problem

- Watersheds in edge-weighted graphs?
- Mathematical properties ?
- Use of watersheds for optimization?

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Edge-weighted graph

- Let G = (V, E) be a graph.
- Let F be a map from E to  $\mathbb{R}$ .



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Image and edge-weighted graph

For applications to image analysis

- *V* is the set of *pixels*
- *E* corresponds to an *adjacency relation* on *V*, (*e.g.*, 4- or 8-adjacency in 2D)
- The altitude of *u*, an edge between two pixels *x* and *y*, represents the *dissimilarity between x and y*

• F(u) = |I(x) - I(y)|.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Regional minima



### Definition

A subgraph X of G is a minimum of F (at altitude k) if :

- X is connected; and
- k is the altitude of any edge of X ; and
- the altitude of any edge adjacent to X is strictly greater than k

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Extension



a subgraph X

#### Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if  $X \subseteq Y$  and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Extension



### Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if  $X \subseteq Y$  and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Extension



a subgraph X

#### Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if  $X \subseteq Y$  and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Extension



a subgraph X

### Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if  $X \subseteq Y$  and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Extension



a subgraph X

#### Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if  $X \subseteq Y$  and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Extension



a subgraph X

#### Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if  $X \subseteq Y$  and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Extension



a subgraph X

### Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if  $X \subseteq Y$  and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Extension



a subgraph X

#### Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if  $X \subseteq Y$  and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Extension



a subgraph X

### Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if  $X \subseteq Y$  and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Extension



a subgraph X

### Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G. We say that Y is an extension of X (in G) if  $X \subseteq Y$  and if any component of Y contains exactly one component of X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Graph cut

### Definition

Let X be a subgraph of G and let  $S \subseteq E$  be an edge-set.

• We say that S is a (graph) cut for X if  $\overline{S}$  is an extension of X and if S is minimal for this property, i.e., if  $T \subseteq S$ and  $\overline{T}$  is an extension of X, then we have T = S.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Watershed : intuitive idea

#### The church of Sorbier



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

### Watershed cut

#### Definition (drop of water principle)

Let  $S \subseteq E$  be an edge-set.

We say that S is a watershed cut of F if  $\overline{S}$  is an extension of M(F) and if for any  $u = \{x_0, y_0\} \in S$ , there exist  $\pi_1 = \langle x_0, \ldots, x_n \rangle$  and  $\pi_2 = \langle y_0, \ldots, y_m \rangle$  which are two descending paths in  $\overline{S}$  such that :

- x<sub>n</sub> and y<sub>m</sub> are vertices of two distinct minima of F ; and
- $F(u) \ge F(\{x_0, x_1\})$  (resp.  $F(u) \ge F(\{y_0, y_1\}))$ , whenever  $\pi_1$  (resp.  $\pi_2$ ) is not trivial.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

### Watershed cut : example



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality


Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Catchment basins by a steepest descent property

- The *altitude* of a vertex x of G, denoted by F(x), is the minimal altitude of an edge which contains x :
  - $F(x) = \min\{F(u) \mid u \in E, x \in u\}$

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

#### Catchment basins by a steepest descent property

• The *altitude* of a vertex x of G, denoted by F(x), is the minimal altitude of an edge which contains x :

•  $F(x) = \min\{F(u) \mid u \in E, x \in u\}$ 

Let π = ⟨x<sub>0</sub>,..., x<sub>l</sub>⟩ be a path in G. The path π is a path with steepest descent for F if, for any i ∈ [1, l], F({x<sub>i-1</sub>, x<sub>i</sub>}) = F(x<sub>i-1</sub>).

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Catchment basins by a steepest descent property

#### Definition

Let S be a cut for M(F), the minima of F. We say that S is a basin cut of F if, from each point of V to M(F), there exists, in the graph induced by  $\overline{S}$ , a path with steepest descent for F.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Catchment basins by a steepest descent property

#### Theorem (consistency)

An edge-set  $S \subseteq E$  is a basin cut of F if and only if S is a watershed cut of F.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Catchment basins by a steepest descent property

#### Theorem (consistency)

An edge-set  $S \subseteq E$  is a basin cut of F if and only if S is a watershed cut of F.

#### Contribution

• As far as we know, in the literature about discrete watersheds, no similar property has ever been proved.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Relative forest

- Let X and Y be two non-empty subgraphs of G. We say that Y is a *forest relative to* X if :
  - Y is an extension of X; and
  - for any extension Z ⊆ Y of X, we have Z = Y whenever V(Z) = V(Y).

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

### Relative forest

- Let X and Y be two non-empty subgraphs of G. We say that Y is a *forest relative to* X if :
  - Y is an extension of X; and
  - for any extension Z ⊆ Y of X, we have Z = Y whenever V(Z) = V(Y).



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

### Relative forest

- Let X and Y be two non-empty subgraphs of G. We say that Y is a *forest relative to* X if :
  - Y is an extension of X; and
  - for any extension Z ⊆ Y of X, we have Z = Y whenever V(Z) = V(Y).



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Minimum spanning forest

• The weight of a forest Y is the sum of its edge weights *i.e.*,  $\sum_{u \in E(Y)} F(u)$ .

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Minimum spanning forest

# • The weight of a forest Y is the sum of its edge weights *i.e.*, $\sum_{u \in E(Y)} F(u)$ .

#### Definition

We say that Y is a minimum spanning forest (MSF) relative to X if Y is a spanning forest relative to X and if the weight of Y is less than or equal to the weight of any other spanning forest relative to X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Minimum spanning forest : example



• If Y is a MSF relative to X, there exists a unique cut S for Y and this cut is also a cut for X;

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality



- If Y is a MSF relative to X, there exists a unique cut S for Y and this cut is also a cut for X;
- In this case, we say that S is a MSF cut for X.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Watershed optimality

#### Theorem

An edge-set  $S \subseteq E$  is a MSF cut for the minima of F if and only if S is a watershed cut of F.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# Watershed optimality

#### Theorem

An edge-set  $S \subseteq E$  is a MSF cut for the minima of F if and only if S is a watershed cut of F.

#### Contribution

• As far as we know, this is the first result which establishes watershed optimality.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Minimum spanning tree

• Computing a MSF  $\Leftrightarrow$  computing a minimum spanning tree

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Minimum spanning tree

- Computing a MSF  $\Leftrightarrow$  computing a minimum spanning tree
- Best algorithm [CHAZEL00] : quasi-linear time

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Minimum spanning tree

- Computing a MSF ⇔ computing a minimum spanning tree
- Best algorithm [CHAZEL00] : quasi-linear time

#### Problem

Can we reach a better complexity for computing watershed cuts?

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# A linear-time algorithm for watershed cuts

#### Result

We propose the Stream Algorithm.

- Stream Algorithm runs in linear time whatever the range of the input map
  - No need to sort
  - No need to use a hierarchical queue

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# A linear-time algorithm for watershed cuts

#### Result

We propose the Stream Algorithm.

- Stream Algorithm runs in linear time whatever the range of the input map
  - No need to sort
  - No need to use a hierarchical queue
- Furthermore, Stream Algorithm does not need to compute the minima as a pre-processing step.

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

# A linear-time algorithm for watershed cuts

#### Result

We propose the Stream Algorithm.

- Stream Algorithm runs in linear time whatever the range of the input map
  - No need to sort
  - No need to use a hierarchical queue
- Furthermore, Stream Algorithm does not need to compute the minima as a pre-processing step.

#### Contribution

To the best of our knowledge, this is the first watershed algorithm satisfying such properties

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Conclusion on watershed cuts



Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Conclusion on watershed cuts

• In fact, there is more to say on watershed cuts ....

Watershed cuts : definition and consistency Relative minimum spanning forests : watershed optimality

## Conclusion on watershed cuts



Laurent Najman Watershed cuts and Combinatorial Optimization

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Watershed and optimization : intuitive idea

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

## Watershed and optimization : intuitive idea

#### The church of Sorbier



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Edge-weighted graph, revisited

• An image seen as a graph G = (V, E)

Image  $3 \times 3 \rightarrow$  Weighted graph  $3 \times 3$ 





A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Edge-weighted graph, revisited

• An image seen as a graph G = (V, E)

Image  $3 \times 3 \rightarrow$  Weighted graph  $3 \times 3$ 



• Edges are weighted by a *similarity* measure i.e. *inversely* proportional to the image gradient

• 
$$w_{ij} = F(\{x_i, x_j\}) = F(u) = \exp(-\beta(I(x_i) - I(x_j))^2).$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Edge-weighted graph, revisited

• An image seen as a graph G = (V, E)

Image  $3 \times 3 \rightarrow$  Weighted graph  $3 \times 3$ 



• Edges are weighted by a *similarity* measure i.e. *inversely* proportional to the image gradient

• 
$$w_{ij} = F(\{x_i, x_j\}) = F(u) = \exp(-\beta(I(x_i) - I(x_j))^2).$$



• Seed specification :

Power Watersheds for Optimization

A unifying framework for combinatorial optimization

### New framework for image segmentation

• Given  $\begin{cases} \text{two real positive numbers } p \text{ and } q \\ \text{seeds for the background } B, \\ \text{seeds for the foreground } F, \end{cases}$ 

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

#### New framework for image segmentation

- Given  $\begin{cases} \text{two real positive numbers } p \text{ and } q \\ \text{seeds for the background } B, \\ \text{seeds for the foreground } F, \end{cases}$
- Compute *x* verifying

$$\min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_i - x_j|^q$$

Such that x(F) = 1, x(B) = 0.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### New framework for image segmentation

- Given Given two real positive numbers *p* and *q* seeds for the background *B*, seeds for the foreground *F*,
- Compute *x* verifying

$$\min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_{i} - x_{j}|^{q}$$

Such that x(F) = 1, x(B) = 0.

• Result : segmentation *s* defined  $\forall i$  by  $s_i = \begin{cases} 1 \text{ si } x_i \geq \frac{1}{2}, \\ 0 \text{ si } x_i < \frac{1}{2}. \end{cases}$ 

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Graph Cuts

• Problem : compute x

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij}^{p=1} |x_i - x_j|^{q=1}$$

- Min cut / Max flow duality
- Max Flow algorithm



Graph Cuts

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

• Problem : compute x

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij} |x_i - x_j|$$

- Min cut / Max flow duality
- Max Flow algorithm


Graph Cuts

• Problem : compute *x* 

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij} |x_i - x_j|$$

- Min cut / Max flow duality
- Max Flow algorithm



A unifying framework for combinatorial optimization

Graph Cuts

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

• Problem : compute x

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij} |x_i - x_j|$$

- Min cut / Max flow duality
- Max Flow algorithm



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Graph Cuts : example

- favor small boundaries
- robust to uncentered seed placement



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Graph Cuts : example

- favor small boundaries
- robust to uncentered seed placement



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

## Random Walker

• Combinatorial version of the Dirichlet problem

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij} (x_i - x_j)^2 \quad \leftarrow \quad u = \arg\min\int_{\Omega} |\nabla u|^2 d\Omega$$

Potentials analogy





A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Random Walker

• Combinatorial version of the Dirichlet problem

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij}^{p=1} (x_i - x_j)^{q=2} \quad \leftarrow \quad u = \arg\min \int_{\Omega} |\nabla u|^2 d\Omega$$

Potentials analogy





A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

## Random Walker

• Combinatorial version of the Dirichlet problem

$$x = \arg\min\sum_{e_{ij} \in E} w_{ij} (x_i - x_j)^2 \quad \leftarrow \quad u = \arg\min\int_{\Omega} |\nabla u|^2 d\Omega$$

Potentials analogy





A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Random Walker

• Combinatorial version of the Dirichlet problem

$$x = \arg\min \sum_{e_{ij} \in E} w_{ij} (x_i - x_j)^2 \quad \leftarrow \quad u = \arg\min \int_{\Omega} |\nabla u|^2 d\Omega$$



• Potentials analogy





A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

#### Random Walker : example



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Shortest path forest

- take the inverse of the weights
- the shortest path starting from each node to reach a seed node is computed
- Dijsktra algorithm
- [Sinop et al. 07] :

$$\lim_{p=q\to\infty} \bar{x}_{pq} = \min_{x} \sum_{e_{ij}\in E} w_{ij}^{p=q} (x_i - x_j)^q$$



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Shortest path forest

- take the inverse of the weights
- the shortest path starting from each node to reach a seed node is computed
- Dijsktra algorithm
- [Sinop et al. 07] :

$$\lim_{p=q\to\infty} \bar{x}_{pq} = \min_{x} \sum_{e_{ij}\in E} w_{ij}^{p=q} (x_i - x_j)^q$$



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

## Shortest path forest

- take the inverse of the weights
- the shortest path starting from each node to reach a seed node is computed
- Dijsktra algorithm
- [Sinop et al. 07] :

$$\lim_{p=q\to\infty} \bar{x}_{pq} = \min_{x} \sum_{e_{ij}\in E} w_{ij}^{p=q} (x_i - x_j)^q$$



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

#### Shortest path forest : example

 Very sensitive to the object centering relatively to the seeds



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

## Maximum Spanning Forest (MSF)

- maximize the sum of weights over the edges of a forest spanning the graph
- different labeled nodes have to belong to different trees
- Kruskal, Prim algorithms



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Maximum Spanning Forest (MSF) : example

- robust to small seeds
- leaking effect



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Algorithms deriving from values of p et q

| p<br>q   | 0                      | finite                 | $\infty$                                   |
|----------|------------------------|------------------------|--------------------------------------------|
| 1        | Reduction to seeds     | Graph cuts             | Max Spanning Forest<br>[Allène et al. 07]  |
| 2        | ℓ₂-norm Voronoi        | Random walker          | Max Spanning Forest<br>[Couprie et al. 09] |
| $\infty$ | $\ell_1$ -norm Voronoi | $\ell_1$ -norm Voronoi | Shortest Path Forest<br>[Sinop et al. 07]  |

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Algorithms deriving from values of p et q

| p<br>q   | 0                      | finite                 | $\infty$                                   |
|----------|------------------------|------------------------|--------------------------------------------|
| 1        | Reduction to seeds     | Graph cuts             | Max Spanning Forest<br>[Allène et al. 07]  |
| 2        | ℓ₂-norm Voronoi        | Random walker          | Max Spanning Forest<br>[Couprie et al. 09] |
| $\infty$ | $\ell_1$ -norm Voronoi | $\ell_1$ -norm Voronoi | Shortest Path Forest<br>[Sinop et al. 07]  |

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Algorithms deriving from values of p et q

| p<br>q   | 0                      | finite                 | $\infty$                                   |
|----------|------------------------|------------------------|--------------------------------------------|
| 1        | Reduction to seeds     | Graph cuts             | Max Spanning Forest<br>[Allène et al. 07]  |
| 2        | ℓ₂-norm Voronoi        | Random walker          | Max Spanning Forest<br>[Couprie et al. 09] |
| $\infty$ | $\ell_1$ -norm Voronoi | $\ell_1$ -norm Voronoi | Shortest Path Forest<br>[Sinop et al. 07]  |

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Algorithms deriving from values of p et q

| p<br>q   | 0                      | finite          | $\infty$                                   |
|----------|------------------------|-----------------|--------------------------------------------|
| 1        | Reduction to seeds     | Graph cuts      | Max Spanning Forest<br>[Allène et al. 07]  |
| 2        | ℓ₂-norm Voronoi        | Random walker   | Max Spanning Forest<br>[Couprie et al. 09] |
| $\infty$ | $\ell_1$ -norm Voronoi | ℓ1-norm Voronoi | Shortest Path Forest<br>[Sinop et al. 07]  |

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Algorithms deriving from values of p et q

| p<br>q   | 0                      | finite                 | $\infty$                                   |
|----------|------------------------|------------------------|--------------------------------------------|
| 1        | Reduction to seeds     | Graph cuts             | Max Spanning Forest<br>[Allène et al. 07]  |
| 2        | ℓ₂-norm Voronoi        | Random walker          | Max Spanning Forest<br>[Couprie et al. 09] |
| $\infty$ | $\ell_1$ -norm Voronoi | $\ell_1$ -norm Voronoi | Shortest Path Forest<br>[Sinop et al. 07]  |

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Algorithms deriving from values of p et q

| p<br>q   | 0                      | finite                 | $\infty$                                   |
|----------|------------------------|------------------------|--------------------------------------------|
| 1        | Reduction to seeds     | Graph cuts             | Max Spanning Forest<br>[Allène et al. 07]  |
| 2        | ℓ₂-norm Voronoi        | Random walker          | Max Spanning Forest<br>[Couprie et al. 09] |
| $\infty$ | $\ell_1$ -norm Voronoi | $\ell_1$ -norm Voronoi | Shortest Path Forest<br>[Sinop et al. 07]  |

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Algorithms deriving from values of p et q

| p<br>q   | 0                      | finite                       | $\infty$                                   |
|----------|------------------------|------------------------------|--------------------------------------------|
| 1        | Reduction to seeds     | Graph cuts                   | Max Spanning Forest<br>[Allène et al. 07]  |
| 2        | ℓ₂-norm Voronoi        | Random walker                | Max Spanning Forest<br>[Couprie et al. 09] |
| $\infty$ | $\ell_1$ -norm Voronoi | ℓ <sub>1</sub> -norm Voronoi | Shortest Path Forest<br>[Sinop et al. 07]  |

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

#### Algorithm for the case $p = \infty$ , variable q

$$\bar{x}_q = \lim_{p \to \infty} x_{p,q}^*$$

#### Power watershed algorithm (outline)

Build an MSF outside of plateaus, and optimize on plateaus

$$\sum_{e_{ij} \in \mathsf{plateau}} |x_i - x_j|^q$$

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Algorithm for the case $p = \infty$ , variable q

e

$$\bar{x}_q = \lim_{p \to \infty} x_{p,q}^*$$

#### Power watershed algorithm (outline)

Build an MSF outside of plateaus, and optimize on plateaus

$$\sum_{ij \in \mathsf{plateau}} |x_i - x_j|^q$$

#### Theorem (Convergence)

If q > 1, the potential  $\bar{x}_{pq}$  converges, as  $p \to \infty$ , towards the potential  $\bar{x}_q$  obtained by the Power Watershed algorithm.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Convergence of RW when $p \rightarrow \infty$ towards PW

Input seeds



PowerWatershed q = 2



Random Walker p = 1...30



Random Walker p = 30



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Theorems

#### Theorem (MSF cut)

The cut obtained by the Powerwatershed algorithm is a MSF cut.

#### Theorem (Watershed cut)

The cut obtained by the Powerwatershed algorithm is a watershed cut of the graph morphologically reconstructed from the seeds.

#### Theorem (Uniqueness)

When q > 1, the solution  $x^*$  to the minimization of

$$\lim_{p\to\infty}\min_{x}\sum_{e_{ij}\in E}w_{ij}{}^{p}|x_{i}-x_{j}|^{q}$$

is unique.

(Thus, when q > 1, the solution  $\bar{x}$  of the Powerwatershed algorithm is unique.)

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Powerwatershed (q=2) : example

- robust to small seeds size
- less leaking than with standard Maximum Spanning Forest



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Powerwatershed (q=2) : example



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Powerwatershed (q=2) : example



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Generality of the framework

• Possibility to add unary terms to the energy function

$$\min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_i - x_j|^q$$



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

#### Generality of the framework

• Possibility to add unary terms to the energy function

$$\min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_{i} - x_{j}|^{q} + \sum_{v_{i}} w_{F_{i}}{}^{p} |x_{i} - 1|^{q} + \sum_{v_{i}} w_{B_{i}}{}^{p} |x_{i}|^{q}$$



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

#### Generality of the framework

• Possibility to add unary terms to the energy function

$$\min_{x} \sum_{e_{ij} \in E} w_{ij}^{p} |x_{i} - x_{j}|^{q} + \sum_{v_{i}} w_{F_{i}}{}^{p} |x_{i} - 1|^{q} + \sum_{v_{i}} w_{B_{i}}{}^{p} |x_{i}|^{q}$$





A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

#### Generality of the framework



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Generality of the framework



#### Contribution

To the best of our knowledge, this is the first time that watershed is used in other applications than seeded segmentation

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

#### Optimal multilabels segmentation

- More than 2-labels segmentation : NP-hard for Graph cuts
- Exact  $n \ge 2$  labels segmentation for the other algorithms :
- *n* solutions  $x^1, x^2, ..., x^n$  computed
- $x^k$  computed by enforcing  $\begin{cases} x^k(n^k) = 1\\ x^k(n^q) = 0 \text{ for all } q \neq k. \end{cases}$
- Each node *i* is affected to the label for which  $x_i^k$  is maximum :

$$s_i = \arg\max_k x_i^k$$



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

#### Algorithms behavior on plateaus


A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Algorithms behavior on plateaus



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Algorithms behavior on plateaus



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

## Algorithms comparison

- Evaluation on Berkeley database
- Ground truths
- 2 sets of seeds to study robustness to seeds centering :
  - well centered seeds
  - less centered seeds

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Quantitative Results

Dice coeff. between ground truths and the algorithms results on Berkeley database with the centered seeds.



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Examples

#### Input seeds



Shortest Paths







Max Spanning Forests



#### Random Walker



#### Power Watersheds q = 2



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Quantitative Results

Dice coeff. between ground truths and the algorithms results on Berkeley database with the less centered seeds.



Examples

Input seeds



Shortest Paths







Max Spanning Forests



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

#### Random Walker



Power Watersheds q = 2



A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Computation time 2D



#### **Computation times 2D**

Laurent Najman Watershed cuts and Combinatorial Optimization

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

### Computation time 3D



#### **Computation times 3D**

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Which algorithm to use?

- Graph Cuts :
  - good fit for 2D image segmentation in 2 labels
  - too slow for 3D segmentation
- Shortest Paths : segmentation of well centered seeds around the object
- Random Walker :
  - efficient with uncentered seeds
  - defined behavior on plateaus
- Max SF :
  - better segmentations than SPF with uncentered seeds
  - fast  $\rightarrow$  3D segmentation
- Powerwatershed q = 2 :
  - MaxSF properties
  - less sensitive to leaking than standard MaxSF

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Conclusion

• New framework unifying Graph Cuts, Random Walker, MSF and SPF.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Conclusion

- New framework unifying Graph Cuts, Random Walker, MSF and SPF.
- New optimization algorithms family with variable q.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Conclusion

- New framework unifying Graph Cuts, Random Walker, MSF and SPF.
- New optimization algorithms family with variable q.
- The q = 2 algorithm shows segmentation improvement while retaining watershed speed.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Conclusion

- New framework unifying Graph Cuts, Random Walker, MSF and SPF.
- New optimization algorithms family with variable q.
- The q = 2 algorithm shows segmentation improvement while retaining watershed speed.
- Unary terms formulation makes powerwatersheds useful beyond segmentation.

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Conclusion

- New framework unifying Graph Cuts, Random Walker, MSF and SPF.
- New optimization algorithms family with variable q.
- The q = 2 algorithm shows segmentation improvement while retaining watershed speed.
- Unary terms formulation makes powerwatersheds useful beyond segmentation.

#### Contribution

The power watershed leads to a multilabel, scale and contrast invariant, unique global optimum obtained in practice in quasi-linear time

A unifying framework for combinatorial optimization The powerwatershed algorithm Qualitative and quantitative comparison

# Conclusion

- New framework unifying Graph Cuts, Random Walker, MSF and SPF.
- New optimization algorithms family with variable q.
- The q = 2 algorithm shows segmentation improvement while retaining watershed speed.
- Unary terms formulation makes powerwatersheds useful beyond segmentation.

#### Contribution

The power watershed leads to a multilabel, scale and contrast invariant, unique global optimum obtained in practice in quasi-linear time

Anisotropic filtering Surface reconstruction

# Non-convex diffusion using power watersheds

#### • Anisotropic diffusion [Perona-Malik 1990]



Image 100 iterations 200 iterations

Goals of this work :

- $\bullet$  perform anisotropic diffusion using an  $\ell_0$  norm to avoid the blurring effect
- optimize a non convex energy using Power Watershed [Couprie-Grady-Najman-Talbot, ICIP 2010]

Anisotropic filtering Surface reconstruction

# Anisotropic diffusion and $\ell_0$ norm





Leads to piecewise constant results Original image PW result





Anisotropic filtering Surface reconstruction

# Surface reconstruction from a noisy set of dots



• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Anisotropic filtering Surface reconstruction

# Surface reconstruction from a noisy set of dots



• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Anisotropic filtering Surface reconstruction

## Surface reconstruction from a noisy set of dots



• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Anisotropic filtering Surface reconstruction

# Surface reconstruction from a noisy set of dots



• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

Anisotropic filtering Surface reconstruction

## How to solve this problem

- Graph : 3D grid
- Here *x* represents the object indicator to recover.

$$\bar{x} = \lim_{p \to \infty} \arg \min_{x} \sum_{e_{ij} \in E} w_{ij}{}^{p} |x_i - x_j|^q$$
  
s.t.  $x(F) = 1, \ x(B) = 0$ 

• weights : distance function from the set of dots to fit

#### Why PW are a good fit for this problem?

numerous plateaus around the dots to fit  $\rightarrow$  smooth isosurface is obtained



Power watershed solution

Perspectives

#### Anisotropic filtering Surface reconstruction

#### Future work

• Study of the different energies possibly minimized in this framework

Anisotropic filtering Surface reconstruction

### Some papers on watershed cuts

#### Bibliography on watershed cuts

Cousty, J., Bertrand, B., Najman, L. and Couprie, M. : Watershed cuts : minimum spanning forests and the drop of water principle.

*IEEE Transactions on PAMI*, 31(8) :1362–1374, Aug. 2009.

Cousty, J., Bertrand, G., Najman, L. and Couprie, M. : Watershed cuts : thinnings, shortest-path forests and topological watersheds.

*IEEE Transactions on PAMI*, 32(5) :925-939, May 2010

Anisotropic filtering Surface reconstruction

### Some papers on Power watersheds

#### Bibliography on powerwatersheds

- Couprie, C., Grady, L., Najman, L. and Talbot, H. : Power Watersheds : A Unifying Graph Based Optimization Framework.
  IEEE Transactions on PAMI, 33(7) :1384-1399, July 2011.
- C. Couprie, X. Bresson, L. Najman, H. Talbot and L. Grady : Surface reconstruction using Power watersheds. In *Proc. of ISMM 2011.*
- C. Couprie, L. Grady, L. Najman, and H. Talbot : Anisotropic diffusion using power watersheds. In *Proc. of ICIP 2010*.
- Couprie, C., Grady, L., Najman, L. and Talbot, H. : Power watersheds : A new image segmentation framework extending graph cuts, random walker and optimal spanning forest.
  - In Proc. of ICCV, pages 731–738, Sept. 2009.

Questions



### Source code available from

http://sourceforge.net/projects/powerwatershed/

Laurent Najman Watershed cuts and Combinatorial Optimization

Surface reconstruction