
Complete Graph Averaging

Laurent Najman

October 15, 2013

1 Overview

In any digital image, the measurement of the three observed color values
at each pixel is subject to some perturbations. These perturbations are
due to the random nature of the photon counting process in each sensor.
The noise can be amplified by digital corrections of the camera or by any
image processing software. For example, tools removing blur from images
or increasing the contrast enhance the noise.

The principle of the first denoising methods was quite simple: Replacing
the color of a pixel with an average of the colors of nearby pixels. The
variance law in probability theory ensures that if nine pixels are averaged,
the noise standard deviation of the average is divided by three. Thus, if we
can find for each pixel nine other pixels in the image with the same color
(up to the fluctuations due to noise) one can divide the noise by three (and
by four with 16 similar pixels, and so on). This looks promising, but where
can these similar pixels be found?

The most similar pixels to a given pixel have no reason to be close at all.
Think of the periodic patterns, or the elongated edges which appear in most
images. It is therefore licit to scan a vast portion of the image in search of all
the pixels that really resemble the pixel one wants to denoise. Denoising is
then done by computing the average color of these most resembling pixels.
The resemblance is evaluated by comparing a whole window around each
pixel, and not just the color. Intuitively, it amounts at building a complete
edge-weighted graph linking all image pixels, the data of a given pixel being
all the pixels in a neighborood of the pixel under study1. This new filter is
called complete-graph averaging and in a continuous form, it writes:

CGA(u(p)) =
1

C(p)

∫
f(d(B(p), B(q))u(q) dq (1)

where d(B(p), B(q)) is an Euclidean distance between image windows cen-
tered respectively at p and q, f is a decreasing function and C(p) is the
normalizing factor.

1However, we will not build the complete graph, but we will implement it using the
techniques seen in the programming sessions of the course

1



2 Pixelwise Implementation

The denoising of a color image u = (u1, u2, u3) at a certain pixel p writes

ûi(p) =
1

C(p)

∑
q∈B(p,r)

ui(q)w(p, q), C(p) =
∑

q∈B(p,r)

w(p, q) (2)

where i = 1, 2, 3 and B(p, r) indicates a neighborhood centered at p and
size (2r + 1) × (2r + 1) pixels. This research zone is limited to a square
neighborhood of fixed size because of computation restrictions.

The weight w(p, q) depends on the squared Euclidean distance d2 =
d2(B(p, f), B(q, f)) of the 2f + 12f + 1 color windows centered respectively
at p and q.

d2(B(p, f), B(q, f)) =
1

3(2f + 1)2

3∑
i=1

∑
j∈B(0,f)

(ui(p+ j) − ui(q + j))2. (3)

That is, each pixel value is restored as an average of the most resembling
pixels, where this resemblance is computed in the color image. So for each
pixel, each channel value is the result of the average of the same pixels.

We use an exponential kernel in order to compute the weights w(p, q)

w(p, q) = e−
max(d2−2σ2,0.0)

h2 (4)

where σ denotes the standard deviation of the noise and h is the filtering
parameter set depending on the value of σ. The weight function is set
in order to average similar windows up to noise. That is, windows with
square distances smaller than 2σ2 are set to 1, while larger distances decrease
rapidly accordingly to the exponential kernel.

The weight of the reference pixel p in the average is set to the maximum
of the weights in the neighborhood B(p, r). This setting avoids the excessive
weighting of the reference point in the average. Otherwise, w(p, p) should
be equal to 1 and a larger value of h would be necessary to ensure the noise
reduction. By applying the above averaging procedure we recover a denoised
value at each pixel p.

3 Window-wise Implementation

The denoising of a color image u = (u1, u2, u3) in a certain window B =
B(p, f) (centered at p and size (2f + 1) × (2f + 1)) writes

B̂i =
1

C

∑
Q=Q(q,f)∈B(p,r)

ui(Q)w(B,Q), C =
∑

Q=Q(q,f)∈B(p,r)

w(B,Q)

(5)

2



where i = 1, 2, 3, B(p, r) indicates a neighborhood centered at p and size
(2r + 1) × (2r + 1) pixels and w(B(p, f), B(q, f)) has the same formulation
than in the pixelwise implementation.

In this way, by applying the procedure for all windows in the image,
we shall dispose of N = (2f + 1) possible estimates for each pixel. These
estimates can be finally averaged at each pixel location in order to build the
final denoised image.

ûi(p) =
1

N2

∑
Q=Q(q,f)|q∈B(p,f)

Q̂i(p) (6)

4 Parameters

One of the important parameter is the size of the research window. This is
a 21x21 window for small and moderate values of σ. The size of the research
zone is increased to 35x35 for large values of σ due to the necessity of finding
more similar pixels to reduce further the noise.

The value of the filtering parameter writes h = kσ. The value of k
decreases as the size of the patch increases. For larger sizes, the distance
of two pure noise patches concentrates more around 2σ2 and therefore a
smaller value of k can be used for filtering.

Parameters for grayscale images

σ Window Size Research Window Size h

0 < σ ≤ 15 3x3 21x21 0.40σ
15 < σ ≤ 30 5x5 21x21 0.40σ
30 < σ ≤ 45 7x7 35x35 0.35σ
45 < σ ≤ 75 9x9 35x35 0.35σ
75 < σ ≤ 100 11x11 35x35 0.30σ

Parameters for color images

σ Window Size Research Window Size h

0 < σ ≤ 25 3x3 21x21 0.55σ
25 < σ ≤ 55 5x5 35x35 0.40σ
55 < σ ≤ 100 7x7 35x35 0.35σ

5 Examples

Fig. 1 provides some examples of CGA denoising.

3



(a) Original image (b) Noisy image

(c) σ = 10 (d) σ = 40

Figure 1: An image, its noisy version and two different CGA with different
parameters

4



6 Questions

A novel version of the pinkdev library is available on the website. It allows
to read ppm images (color images). This can help you for the question 4.
A set of images is available for testing (i.e, with the result of the CGA
denoising).

1. Program a grayscale average filter (i.e., just the mean in a small win-
dow around the pixel, as seen in the course).

2. Program a grayscale pixelwise CGA filter.

3. Program a grayscale windowwise CGA filter.

4. Extend to color images (3 pgm as input, R, G, B).

5. What are the main differences between the three versions (ie, classical
average filter, pixelwise and window-wise) in term of both image qual-
ity, PSNR and preservation of details? You may want to program a
PSNR estimator to answer that question, but it does not answer to the
qualitative part. For information about PSNR, Wikipedia is a good
start: http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

5

http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

	Overview
	Pixelwise Implementation
	Window-wise Implementation
	Parameters
	Examples
	Questions

