Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs

Laurent Najman Jean Cousty Benjamin Perret

Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge, A3SI, ESIEE

Tuesday 28 may 2013

Highlights

Results

- A quasi-linear algorithm that computes a *binary partition tree by altitude ordering*

- Three linear post-processing algorithms that compute
 - hierarchy of quasi-flat zones
 - also known as the α -tree
 - also known as the Fuzzy Connectedness hierarchy
 - (hierarchies of) watershed cuts
 - hierarchies by increasing attributes
 - constrained connectivity hierarchies or
 - watershed-based hierarchies.

Outline

2 Post-Processing the binary tree

- Quasi-flat zones hierarchy
- Watershed-cut hierarchy
- Attribute-based hierarchies

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree

- Quasi-flat zones hierarchy
- Watershed-cut hierarchy
- Attribute-based hierarchies

Minimum Spanning Tree

The Minimum Spanning Tree (MST) T is a connected spanning graph of the graph G such that the weight of T:

$$F(T) := \sum_{e \in E(T)} F(e)$$

is the least possible weight for a connected spanning subgraph of G.

Kruskal algorithm for MST (High-Level View)

- create a forest *F* (a set of trees), where each vertex in the graph is a separate tree
- create a set S containing all the edges in the graph
- while S is nonempty and \mathcal{F} is not yet a single tree
 - remove an edge with minimum weight from S
 - if that edge connects two different trees, then add it to the forest, combining two trees into a single tree
 - otherwise discard that edge.

At the termination of the algorithm, the forest has only one component and forms a minimum spanning tree of the graph.

The disjoint set problem

The disjoint set problem consists in maintaining a collection \mathcal{Q} of disjoint sets under the operation of union.

Each set Q in Q is represented by a unique element of Q, called the *canonical element*.

- MakeSet(q_1)
- FindCanonical (q_1)
- Union (q_1, q_2)

Kruskal algorithm for MST (Implementation)

```
Data: An edge-weighted graph (V, E, F).
  Result: A minimum spanning tree MST
  Result: A collection Q
  // Collection \mathcal{Q} is initialized to \emptyset
1 e := 0
2 for all x_i \in V do MakeSet(i);
3 for all edges \{x, y\} by (strict) increasing weight F(\{x, y\}) do
     c_x := Q.FindCanonical(x); c_y := Q.FindCanonical(y)
4
     if c_x \neq c_v then
5
        Q.Union(c_x, c_y);
6
      MST[e] := \{x, y\}; e := e + 1
7
      else DoSomething(\{x, y\})
8
```

Main question in Kruskal implementation

Question

How to represent and implement the collection Q.

Answer

A good representation for Q is as a set of trees.

Binary Partition Tree by altitude ordering

Edge-weighted graph L. Najman et al. Playing with Kruskal

Binary Partition Tree by altitude ordering

First edge-node L. Najman et al. Playing with Kruskal

Binary Partition Tree by altitude ordering

Second edge-node

Binary Partition Tree by altitude ordering

Third edge-node

Binary Partition Tree by altitude ordering

Fourth edge-node

Binary Partition Tree by altitude ordering

Fifth edge-node

Binary Partition Tree by altitude ordering

Sixth edge-node

Binary Partition Tree by altitude ordering

No new node

Binary Partition Tree by altitude ordering

Seventh edge-node

Binary Partition Tree by altitude ordering

No new node

Binary Partition Tree by altitude ordering

No new node

Binary Partition Tree by altitude ordering

Final Q_{BT} L. Najman et al. Playing with Kruskal

Q_{BT} Union-Find

Procedure Q_{BT} .MakeSet(q)

1 Q_{BT} .parent[q] := -1; Q_{BT} .size += 1;

Function Q_{BT} .FindCanonical(q)

1 while Q_{BT} .parent[q] ≥ 0 do $q := Q_{BT}$.parent[q];

2 **return** *q*;

Function Q_{BT} .Union (c_x, c_y)

- 1 Q_{BT} .parent $[c_x]$:= Q_{BT} .size; Q_{BT} .parent $[c_y]$:= Q_{BT} .size;
- 2 Q_{BT} .MakeSet(Q_{BT} .size);
- 3 return Q_{BT} .size-1;

Q_{BT} Union-Find

Interest

The produced tree is useful

Drawback

The algorithm is slow : $O(|V|^2)$

Tarjan Union-Find

Interest

Quasi-linear complexity

Drawback

The produced tree is not useful for our purpose

Tarjan Union-Find

Procedure Q_T .MakeSet(q)

1 Q_T .parent[Q_T .size] := -1; Q_T .Rnk[Q_T .size] := 0; Q_T .size += 1;

Function Q_T .FindCanonical(q)

- 1 r := q;
- 2 while $Q_T.parent[r] \ge 0$ do $r := Q_T.parent[r]$;
- 3 while $Q_T.parent[q] \ge 0$ do $tmp := q; q := Q_T.parent[q];$ $Q_T.parent[tmp] := r;$

Function Q_T .Union (c_x, c_y)

- 1 if $(Q_T.Rnk[c_x] > Q_T.Rnk[c_y])$ then swap (c_x, c_y) ;
- 2 if $(Q_T.Rnk[c_x] == Q_T.Rnk[c_y])$ then $Q_T.Rnk[c_y] += 1$;
- 3 Q_T .parent $[c_x] := c_y;$
- 4 **return** c_y ;

Q_{EBT} : Efficient Q_{BT} Union-Find

Interest

- Combination of both Q_{BT} and Q_T .
- Quasi-linear complexity.
- One of the produced trees, Q_{BT} , is useful.

Q_{EBT} : Efficient Q_{BT} Union-Find

Procedure Q_{EBT} .MakeSet(q)

1 Q_{EBT} .Root[q]:=q; Q_{BT} .MakeSet(q); Q_T .MakeSet(q);

Function Q_{EBT} .Union (c_x, c_y)

- 1 $t_u := Q_{EBT}$.Root $[c_x]$; $t_v := Q_{EBT}$.Root $[c_y]$;
- 2 Q_{BT} .parent $[t_u] := Q_{BT}$.parent $[t_v] := Q_{BT}$.size;
- 3 Q_{BT} .children[Q_{BT} .size].add({ t_u });
- 4 Q_{BT} .children[Q_{BT} .size].add($\{t_v\}$);
- 5 c:= Q_T .Union (c_x, c_y) ; // Union in Q_T (with compression)
- 6 Q_{EBT} .Root[c] := Q_{BT} .size; // Update the root of Q_{EBT}
- 7 Q_{BT} .MakeSet(Q_{BT} .size);
- 8 return Q_{BT} .size-1;

Function Q_{EBT} .FindCanonical(q)

1 return Q_T .FindCanonical(q);

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree

- Quasi-flat zones hierarchy
- Watershed-cut hierarchy
- Attribute-based hierarchies

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Some helper functions

Function getEdge(n)

Data: a (non-leaf) node *n* of Q_{BT} **Result**: the edge *e* of the MST corresponding to the *n*th node 1 **return** n - |V|;

Function weightNode(n)

1

Data: a (non-leaf) node of the tree **Result**: the weight of the MST edge associated with the n^{th} node of Q_{BT} **return** F(MST[getEdge(n)]);

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree

- Quasi-flat zones hierarchy
- Watershed-cut hierarchy
- Attribute-based hierarchies

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Q_{CT} : Quasi-flat zones hierarchy

- Also know as the α -tree.
- Also know as the Fuzzy Connectedness hierarchy.
- A quasi-linear algorithm: min-tree of the MST

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Q_{CT} : Quasi-flat zones hierarchy

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Quasi-flat zones hierarchy

Procedure Canonize Q_{BT}

Data: Q_{BT} **Result**: Q_{CT} , a canonized version of Q_{BT} 1 for all nodes n of Q_{BT} do Q_{CT} .parent[n]:= Q_{BT} .parent[n]; Q_{CT} .size+=1; ² for each non-leaf and non-root node n of Q_{BT} by decreasing order do $p := Q_{CT}$.parent[n]; 3 if (weightNode(p) == weightNode(n)) then 4 for all $c \in Q_{BT}$.children[n] do Q_{CT} .parent[c]:=p; 5 Q_{CT} .parent[n]:=n; // Delete node n of Q_{CT} 6 // If needed, build the list of children 7 for all nodes n of Q_{CT} do $p:=Q_{CT}$.parent[n]; if $p \ge 0$ and $p \ne n$ then Q_{CT} .children[p].add(n); 8

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Quasi-flat zones hierarchy

Q_{BT} or Q_{CT} ?

- It is possible to merge the min-tree algorithm with Kruskal's MST to obtain Q_{CT} in one step
- Q_{BT} contains more information than Q_{CT}
- The rest of the talk shows that computing Q_{CT} is not needed

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree

- Quasi-flat zones hierarchy
- Watershed-cut hierarchy
- Attribute-based hierarchies

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Watershed cuts

- Partitions defined thanks to the *drop of water* principle
- Difficulty: non-uniqueness on flat zones (hence a choice)
- Also leads to a hierarchy (of watershed-cut partitions)
 - hierarchy by pass/connection value
 - (also known as Fuzzy connectedness)

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Watershed cuts

Watershed cuts

Function watershed

```
Data: Q_{BT}
   Result: A binary array ws indicating which MST edges are watershed
  for all leaf-nodes n of Q_{BT} do minima[n]:=0;
   for each non-leaf node n of Q_{BT} by increasing order do
 2
       flag := TRUE; nb := 0;
 3
       for all c \in Q_{BT}.children[n] do
 4
            m := \min[c]; nb := nb + m;
 5
            if (m == 0) then flag := FALSE;
 6
       ws[getEdge(n)] := flag;
 7
       if (nb \neq 0) then minima[n] := nb;
 8
       else
 9
            if (n is the root of Q_{BT}) then minima[n] := 1;
10
            else
11
                p := Q_{BT}.parent[n];
12
             if (weightNode[n]<weightNode[p]) then minima[n] := 1;
else minima[n]:=0;
13
14
```

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree

- Quasi-flat zones hierarchy
- Watershed-cut hierarchy
- Attribute-based hierarchies

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Attribute-based hierarchies

- Increasing attributes
- Watershed-cut framework
- Constrained-connectivity framework
 - The range criterion is indeed increasing
- Area-base, depth-based, volume-based hierarchies...
 - either from a watershed-cut hierarchy
 - or from a quasi-flat zone hierarchy

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Attribute-based hierarchies

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Attribute-based hierarchies

```
Function getAttribute(n)
  Data: A node n of Q_{BT}
  Result: The attribute at the time of the merging
1 if (n is the root) or (weightNode(parent[n]) \neq weightNode(n)) then
      for all c children of n do getAttribute(c);
2
      attribute[n] := attributeComp[n];
3
4 else
       max:=0:
5
      for all children c of n do
6
          v:=getAttribute(c);
7
          if v > max then max := v;
8
      attribute[n] := max;
9
10 return attribute[n];
```

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Attribute-based hierarchies

Procedure ComputeMergeAttributeMST

Data: Q_{BT}

2

3

- **Result**: a reweighted MST *G* corresponding to the attribute-based hierarchy
- 1 for any non-leaf node n of Q_{BT} do

$$| a_1 := attribute[children[n].left];$$

$$G[getEdge(n)] := \min(a_1, a_2);$$

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Conclusion

- Several elegant yet efficient algorithms for morphological trees
- Based on the Minimum Spanning Tree
- Other approaches than Kruskal can be used
- Unification theory in: Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. (ISMM 2013).
- Source code at http://www.esiee.fr/~info/sm/

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Summary of the poster content

	$\mathcal{PH}(G)$	$\mathcal{MH}(G)$	$\mathcal{PH}(T)$	$\mathcal{MH}(T)$	Q	\mathcal{B}_{\prec}	\mathcal{H}_{S}
$\mathcal{PH}(G)$	\Leftrightarrow	\Leftrightarrow	\Rightarrow	\Rightarrow	\Rightarrow	×	×
$\mathcal{MH}(G)$	\Leftrightarrow	\Leftrightarrow	\Rightarrow	\Rightarrow	\Rightarrow	×	×
$\mathcal{PH}(T)$	\Leftrightarrow	\Leftarrow	\Leftrightarrow	\Leftrightarrow	\Rightarrow	\Leftarrow	Х
$\mathcal{MH}(T)$	\Leftarrow	\Leftarrow	\Leftrightarrow	\Leftrightarrow	\Rightarrow	\Leftarrow	×
Q	\Leftrightarrow	\Leftarrow	\Leftarrow	\Leftarrow	\Leftrightarrow	\Rightarrow	×
\mathcal{B}_{\prec}	×	×	\Rightarrow	\Rightarrow	\Rightarrow	\Leftrightarrow	\Rightarrow
\mathcal{H}_{S}	×	×	×	×	×	\Leftarrow	\Leftrightarrow

Table 1: Summary of the main results.

Quasi-flat zones hierarchy Watershed-cut hierarchy Attribute-based hierarchies

Thank for your attention !

Mathematical Morphology

Edited by Laurent Najman and Hugues Talbot

STE

WILEY

Pink: http://pinkhq.comOlena: http://www.lrde.epita.fr/cgi-bin/twiki/view/Olena