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Cité Descartes, BP99, 93162 Noisy-le-Grand Cedex France

2Fédération de Cardiologie
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Abstract

In this paper, we describe a database of cine-MR (3D+t) images of the left ventricle. This database
contains the voxel data, one automated and two manual segmentations for each sequence of images. The
segmentations are validated from a clinical point of view. We detail how the images were obtained, as
well as how the associated segmentations were performed. Wealso provide the data clinical validation
process.

This database, including tools to compute quantitative measures and the software package used to
obtain the automated segmentation, is freely available forresearch purposes.

The address of the site ishttp://laurentnajman.org/heart.
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1 Introduction

The assessment of left ventricular (LV) function is performed routinely in the clinical field. It provides
important prognostic information among patients with various cardiomyopathies. Cardiac magnetic reso-
nance (CMR) can image the heart in arbitrary direction with excellent spatial and temporal resolution. This
procedure yields full anatomic coverage and dynamic assessment of the heart throughout the cardiac cycle.
Thanks to good image quality and contrast, as well as complete anatomic coverage of the LV, CMR has
become a gold standard for the clinical assessment of LV function [3]. However, dynamic CMR in the cine
mode yields a large amount of data. As a consequence, the clinical analysis of LV function from cine-MRI
requires an interactive segmentation of adjacent 2D short-axis locations, as frequent manual corrections of
myocardial contours are required. This is especially true in patients with segmental wall motion abnormal-
ity or deformed LV. Numerous authors (see for instance [9, 14, 10, 6, 8, 13, 7, 11]) have contributed in the
development of accurate methods that aim to allow fully automated segmentation of the whole 3D cine-MRI
dataset over time (i.e., 3D+t or 4D) for the assessment of LV function, volumes and mass.

One of the main problems in the assesment of those methods is the obtention of a database of cine-MRI and
associated ground-truth segmentations that are also validated from a clinical point of view. Until now, to our
best knowledge, no such base was available. This not only prevents the clinical validation of some of the
pre-cited methods, but also precludes a fair comparison between the existing validated methods.

The goal of this paper is to propose a database freely available on the internet for research purposes. It
contains cine-MR images of the LV, together with three associated segmentations: two hand-made seg-
mentations – each one of them performed by an independent andblinded expert cardiologist – and one
4D automated segmentation. We also provide scripts and programs that compute each of the quantitative
measures described in this paper, and the software package used to obtain the automated segmentation. The
web-address of this database ishttp://laurentnajman.org/heart.

The outline of the paper is the following: we first describe the acquisition of the images. We then detail
the methodologies for the three segmentations, concentrating on the manual ones. Finally we discuss the
validity of the different segmentations, both quantitatively and qualitatively, by comparing them together,
each one of them against the others.

2 MR images acquisition

Screened population patients referred to our Institutionsfor recent acute myocardial infarction (AMI) were
prospectively screened regardless of the treatment received at the acute phase. To be included, patients had to
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exhibit symptoms of AMI – i.e., chest pain, ST segment elevation of more than 1 mm in at least 2 contiguous
leads of the ECG, and greater than double the normal elevation of creatine-kinase MB subfraction. In
addition, the diagnosis of AMI was required to be confirmed byinvasive coronary angiography with a
clearly documented culprit epicardial coronary artery. Ifno contraindication to CMR was found, patients
were scheduled to have CMR examination between day 2 and day 4after AMI. The study protocol was
approved by the Joint Committee of the Henri Mondor Medical Institutions and informed written consent
was obtained from all patients.

In fine, 18 out of 25 patients from routine clinical practice were screened according to these guidelines.
These patients had experienced a first AMI and had agreed to undergo subsequent CMR examination.

The patients were examined on a 1,5 T MR scanner (Magnetom SymphonyR©, Siemens, Erlangen, Ger-
many) using 6-channel anterior and posterior phased array surface coil technology. Following a 3D fast
gradient-echo localizer sequence, the long axis of the heart was located and dynamic cine-MR images of
the heart were acquired in 2-chamber, 4-chamber, and 3-chamber views. From these, the short axis of the
heart was located perpendicularly to the long axis of the LV.Contiguous short-axis slices of the LV were
acquired from base to the apex encompassing the entire LV, through the use of repeated breath-held ECG-
gated steady-state free precession sequence (SSFP) with typical imaging parameters as follow: 300-360 mm
field of view, 2.1 ms TR, 1.6 ms TE, 60◦ flip angle, 6 mm slice thickness, no gap, image matrix 256x160,
30-40 ms temporal resolution.

The number of LV short-axis locations required to cover the entire LV by cine-CMR ranged from 9 to 14.
The number of frames acquired during the entire cardiac cycle ranged from 22 to 37, depending on heart
rate (49-91 bpm). The most basal slice included in the analysis was located just above the mitral valve
within the LV cavity. To be included, the basal myocardium had to be visible in the entire circumference at
end-systole. The most apical slice was chosen as the one withthe smallest visible LV cavity at end-systole.
Since the sequences are ECG-gated, the end-diastolic framecorresponds to the first image of the sequence.

3 Methodologies for segmentation

3.1 Preprocessing

For each patient, the cine MRI dataset consisted of a succession of contiguous (no gap) LV short-axis 2D
planes that were successively imaged over time (2D+t). The sequences were registered to the heart-cycle,
and could therefore be stacked in order to construct 3D sequences. Taken together, these different planes
from base to apex were considered a 3D representation of the LV. The succession of these, over time,
is a 3D+t representation of the LV. Before applying any segmentation procedure, the images were over-
sampled in order to provide isotropic voxels. For each sequence of 3D+t images, a single mouse click on
the center of the LV cavity at end-systolic time was recorded, and the images were cropped centered on
the corresponding location. Typically, the size of each volume of the sequence represents 100× 100× 40
voxels. When a misalignment of the different sections of a same volume was observed, a translation-only
registration procedure was applied.

3.2 Automated 4D segmentation

The method for the 4D segmentation of the LV was recently developed and is described elsewhere [4] (a
journal paper is in preparation). It automatically detectsboth the endocardial and epicardial borders of the
LV for the whole 4D dataset, based on prior knowledge of the shape and appearance of the LV. The 4D



3.3 Manual segmentation 4

object isolated between the 2 borders is labeled as LV myocardium (LVM) and the 4D object isolated inside
the endocardial border is labeled as LV cavity (LVC).

The computation time to automatically segment a whole 4D sequence ranged from 2 to 5 minutes on a
conventional personal computer.

3.3 Manual segmentation

A conventional 2D manual segmentation of the LV myocardium was performed by two independent and
blinded expert cardiologists. They used a software packagethat is well established for the post-processing
of medical images (AnalyzeR©, Biomedical Imaging Resource, Mayo Clinic Foundation, Rochester, MN).
These two experts are callede1 ande2 in the sequel. The cine-MR dataset was analyzed as a succession
of 2D LV short-axis planes. For each slice location, the experts manually overlaid the endocardial and
epicardial contours both at end-diastolic and end-systolic times. During manual tracing, papillary muscles
and LV trabeculae were included within the LV myocardium. Then, the segmented slices were stacked to
rebuilt a 3D object for quantification.

The time spent by the experts to manually segment one volume of a 3D+t sequence ranged from 15 to 20
minutes. For this reason, a manual segmentation is not available at every time-step.

4 Validation of the segmentations

In this section, we discuss the quality of the segmentationsof the two experts and of the automated method,
both from a quantitative and a qualitative point of view.

4.1 Quantitative assessment

In order to characterize the accuracy of all methods, we usedtwo different kinds of measures. The first
measure is relative to the mean distance between the surfaces extracted from the automated segmentations
and from the manual segmentations. The second characterises the false positive and false negative volume
of the segmentations. Then, we assess the ability of the automated method to produce reliable characteristics
of the LV function via the computation of the ejection fraction and of the myocardium mass.

Accuracy: point-to-surface measurement

Given two surfaces∂X and∂Y represented by two sets of polygons, thepoint-to-surface measurement (P2S)
between∂X and∂Y estimates the mean distance between the vertices of∂X and∂Y (see [1]). A symmetrical
measure is obtained by taking the maximum from the P2S between ∂X and∂Y and the P2S between∂Y and
∂X .

On our dataset, the endocardial and the epicardial borders were extracted from the segmentations by a march-
ing cube algorithm[5]. The P2S was computed from the segmentations obtained by the automated method
and the two experts. In order to evaluate the inter-observervariability the P2S between the two experts is
also provided. Table1 presents the mean and standard deviation of these measures at end-diastolic time and
end-systolic time. We note that, in all cases in Table1, the P2S is less than 1 voxel. The automated method
achieved a mean P2S of 1.51mm± 0.38 for the endocardial border and a mean P2S of 1.81mm± 0.43
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Table 1: Details of the point to surface measurements from the results of the various segmentation methods
(mean point to surface measurements expressed in mm± standard deviation).

soft. vs.e1 soft. vs.e2 e1 vs. e2

End-diastolic time
Endocardial border 1.52± 0.35 1.67± 0.43 1.37± 0.47
Epicardial border 2.04± 0.35 1.68± 0.39 1.23± 0.41
End-systolic time
Endocardial border 1.50± 0.41 1.35± 0.34 1.15± 0.41
Epicardial border 1.90± 0.56 1.61± 0.41 1.31± 0.83

for the epicardial border. These results compare favourably with those obtained by other groups on their
own datasets. Furthermore, the P2S between automated and manual segmentations is in the same range
as the inter-observer P2S. This is a strong indication that the automated method produces as satisfying a
segmentation as either manual one.

Although the accuracy of the methods is assessed by the P2S, these measures do not precisely describe the
quality of the produced segmentations. In particular, the relative importance of the misclassified objects – a
parameter which becomes crucial while quantifying the volume of the different objects – is not handled by
the point-to-surface measurements.

Accuracy: False Negative/Positive Volume Fraction

In order to better characterise the accuracy of the segmentation methods, we also used the two following
measures preconized by J. Udupaet al. in [12]. Let Y be a subset of the image voxels considered as the
reference segmentation and letX be the segmentation which is to be evaluated. We set

FNVF(X ,Y ) = |Y\X |
|Y | and FPV F(X ,Y ) = |X\Y |

|Y | .

These measures are expressed as a fraction of the volume of “true” delineation. TheFNV F (False Negative
Volume Fraction) indicates the fraction of tissue that was missed andFPV F (False Positive Volume Frac-
tion) denotes the amount of tissue falsely identified as a fraction of the total amount in the “true” delineation.

For each of the 18 patients, we computedFNV F andFPV F for e2 againste1, automated method againste1,
e1 againste2, and automated method againste2.

These measures were computed for three objects:LVC, LV M and for LVCM – the union ofLCM and
LV M. Table2 presents the mean and standard deviation of these measures at end-diastolic and end-systolic
times for the 18 datasets. We remark that error rates betweenthe two experts and between experts and
software are in the same range. In the task of segmentingLVC, LVCM andLV M, the inter-expert errors are
comparable with the errors between software and expert segmentations. However, we observe a tendency
of the automated method to underestimateLVC andLVCM with respect to the experts. Indeed, the false
negatives are 1.5 to 4.5 times greater than the false positives. From a qualitative study described later, the
two experts came to the conclusion that the automated contours were generally better localized than the
manual ones. The apparent under-estimations ofLVC andLVCM can, thus, be seen as a side effect of the
manual segmentation process. In Section4.2, we explain some of the bias due to the manual segmentation
process.
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Table 2: Mean and standard deviation of FNVP, FPVF for all segmentations ofLVC, LVCM andLV M at
end-diastolic and end-systolic-time [see text].

End-diastolic time
e2 vs e1 soft. vse1

LVC FNVF 0.06±0.03 0.13±0.05
FPVF 0.07±0.08 0.03±0.02

LVCM FNVF 0.06±0.01 0.09±0.02
FPVF 0.03±0.06 0.03±0.02

LV M FNVF 0.20±0.04 0.22±0.04
FPVF 0.10±0.03 0.20±0.06

e1 vs e2 soft. vse2

LVC FNVF 0.07±0.05 0.14±0.06
FPVF 0.07±0.02 0.03±0.01

LVCM FNVF 0.02±0.05 0.06±0.03
FPVF 0.07±0.01 0.04±0.02

LV M FNVF 0.11±0.03 0.15±0.04
FPVF 0.22±0.06 0.25±0.10

End-systolic time
e2 vs e1 soft. vse1

LVC FNVF 0.10±0.04 0.16±0.06
FPVF 0.06±0.03 0.05±0.03

LVCM FNVF 0.07±0.01 0.07±0.03
FPVF 0.02±0.02 0.05±0.02

LV M FNVF 0.14±0.04 0.14±0.04
FPVF 0.08±0.03 0.16±0.07

e1 vs e2 soft. vse2

LVC FNVF 0.06±0.03 0.13±0.05
FPVF 0.11±0.05 0.06±0.03

LVCM FNVF 0.02±0.02 0.04±0.02
FPVF 0.07±0.02 0.06±0.02

LV M FNVF 0.09±0.03 0.09±0.02
FPVF 0.15±0.05 0.18±0.06

Assessment of critical parameters

Left ventricular ejection fraction (EF) and left ventricular myocardium mass (MM) are critical parameters
for cardiac diagnosis and remodeling prevention. Their estimation is routinely used by cardiologists. The
EF is the amount of blood ejected during a heart cycle expressed as a fraction of the tele-diastolic volume.
In our dataset the EF (resp. MM) range was 20-75% (resp. 94-197 g).

From the segmented images, the EF can be computed by(|LVCmax|− |LVCmin |)/|LVCmax|, where|LVCmax|
(resp.|LVCmin |) is the maximal (resp. minimal) volume of the left ventricular chamber along the heart cycle.
Let Xo

p denote the measure of the parameterX performed by operatoro for patientp, whereX ∈ {EF,MM},
o ∈ {e1,e2,s}, and p ∈ [1. . .18]. We takerefXp = (X e1

p + X e2
p )/2 as a reference value for the parameterX

on patientp and we evaluate the deviation∆Xo
p = |Xo

p − refXp|/refXp. Notice that∆X e1
p = ∆X e2

p . Over all
18 patients, the automated method achieved a mean deviationon the EF (resp. MM) of 0.032 (resp. 0.050)
whereas the experts only achieved 0.055 (resp. 0.052). Furthermore, we observe that∆EFs

p (resp.∆MMs
p )

is less than∆EFe1
p (resp.∆MMe1

p ) in 8 (resp. 9) of the 18 patients. In other words, the deviation on the EF
(resp. MM) achieved by the automated method is less than the deviation achieved by the experts in 8 (resp.
9) of the 18 patients. We conclude that the automated tool produces reliable assessment of left ventricular
functional parameters comparable to the experts’. A statistical analysis of these data – including linear
regression and Bland-Altman plots – can be found on the web sitehttp://laurentnajman.org/heart.

4.2 Qualitative assessment: manual segmentation and inter-expert variability

We now analyze some features of all segmentation methods which cannot be exhibited solely from a quan-
titative assessment. In Fig.1, we present a view of the segmentations obtained by the two experts and by
the automated method for a sample 3D image. We observe that the LV M segmented bye1 is significantly
thinner than the one segmented bye2. We also remark that in location A, experte1 did not recognize a part
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of the papillar muscle which was however segmented bye2 and by the automated method. In location B,
the myocardium segmented bye1 presents a hole, which is not compatible with anatomy. We note that the
automated method avoids such situations by construction and we observe thate2’s segmentation has no hole.
This topological consideration has however no ill-effect on any of the quantitative measures.

Several explanations can be given. On the one hand, expert segmentations were realized exclusively on 2D
images, which introduces a bias. Neither the spatial coherency between successive 2D sections of a 3D
image, nor temporal coherency with the previous and next images of the sequence were taken into account.
On the other hand, the precise delineation of a contour, pixel by pixel, is a very demanding task for human
operators. It is well known that, in general, human operators can outperform computerized procedure in
recognition tasks, whereas algorithms can often perform better than humans at delineation. Finally, we point
out that there is no standardized procedure for manual segmentation ofLV M in cardiac MR-images, contrary
to what can be the case for other segmentation tasks in other modalities [2]. Therefore, the physicians who
made this evaluation all believe that the automated method generally outperforms manual segmentation.

A

B

A

B

A

B
(a) (b) (c)

Figure 1: Examples of segmentations performed bye1 (a),e2 (b) and the automated method (c).

5 Conclusion

We describe in this paper the acquisition and analysis of a database of cine-MRI of the LV, with associated
clinically-validated segmentations. The number of patients in the database may superficially appear to be
small but, in actual fact, the number of contours processed by the tested techniques corresponds to 4752
endocardial and 4752 epicardial borders drawn from 216 LV short-axis slices, all performed by specialist
cardiologists. The measured values obtained with the automated 4D analysis were found to be comparable
with those obtain by the manual 2D+t methods. In this patientpopulation, there was no other standard for
comparison with true measurements of LV mass or volumes. The4D analysis shows no significant difference
in the clinical practice with values obtained from the interactive analysis of successive 2D locations.

This database is thus validated from a clinical point of view. Freely available for research purposes on
http://laurentnajman.org/heart, it is a first step towards a fair evaluation and comparison ofLV-
segmentation methods. In the future, we plan to enrich this database with subsequent images and other
modalities, as soon as these data are validated from a clinical point of view. We also plan to include anatomo-
pathological animal data (using rabbits and pigs).

The authors would like to emphasize that such a work is only possible if cardiologists and computer scientists
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are working together in close partnership.
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