Automated, accurate and fast segmentation of 4D cardiac images

J. Cousty, L. Najman, M. Couprie, S. Clément-Guinaudeau, T. Goissen, J. Garot

Accuracy

• Point to surface measurement (P2S) from automated and manual segmentations

	Endocardial Border	Epicardial Border
Lötjönen et al (2004) Mitchel et al (2001) Kaus et al (2004) Lorenzo-Valdés et al (2006) van Assen et al (2006)	$2.75 \pm 0.86 \text{ mm}$ $2.28 \pm 0.93 \text{ mm}$ $1.88 \pm 2.00 \text{ mm}$	$2.77 \pm 0.49 \text{ mm}$ $2.63 \pm 0.76 \text{ mm}$ $2.62 \pm 0.75 \text{ mm}$ $2.75 \pm 2.62 \text{ mm}$ $2.23 \pm 0.46 \text{ mm}$ $1.81 \pm 0.43 \text{ mm}$

· Left ventricular critical parameters

MM Mean error: 0.05 (automated) and 0.05 (manual)

- 18 patients from routine clinical practice
- 1,5 T MR scanner (Magnetom Symphony R, Siemens)
- · 3D+t representations of the LV
- Manual segmentation of the myocardium
 - · at end-diastole and end-systole
 - · by two cardiologists

Temporal consistency

- · 3D version as accurate as 4D version
- · But, 4D contours are more regular along cardiac cycle

Mean P2S (18 patients) from successive segmentations along cardiac cycle

Time efficiency

- Computation time: 3 mn (Pentium 4, 3.06 GHz, 512MB)
- · One unique mouse click per 3D+t sequence
- · Training the method on a new MR device: 1 hour of work

Why yet another approach?

Mathematical morphology also provides efficient tools for clinical routine

- 4D watershed
- Homotopic transforms
- Euclidean dilation/Closing/Openning

Left ventricular chamber (LVC)

- Topology: connected object.
- Brightness: it is a bright object surrounded by a significatively darker object
- · Geometry: endocardial border is irregular

Marker: inside of epicardial border

- Topology: connected object.
- · Brightness: very bright and dark objects (right ventricular chamber or lungs) in the complementary set.
- · Geometry: non null myocardial thickness.

Epicardial border

- •Brightness: very low contrasted
- ·Geometry: smooth surface, consistent over time

Marker: outside of epicardial border

- Topology: connected object with one cavity
- Brightness: contains very bright and dark objects (right ventricular chamber or lungs)
- Geometry: bounded myocardial thickness.

Geodesic dilation of:

- a marker (component of a high threshold) in
- · a mask (low threshold)

Euclidean dilation of LVC repulsed by:

background landmarks.

• 4D watershed from markers

· Morphological smoothing filters (Euclidean alternating sequential filers)

Homotopic skeleton constrained by:

- · background landmark
- · maximal myocardial thickness

Prior knowledge

Operators

