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Motivation

Mathematical morphology

m First consistent non-linear theory for image analysis
m Born in the late 60's
m Rely on the algebraic structure of complete lattice

m Adaptable to graphs

Generic data structures

Independent of the dimension of the images

|

|

m A long history in all engineering fields

m Intrinsecally discrete, hence adapted to the digital world
|

Current trend: adapt signal processing tools to graphs
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Link between Graph and Mathemathical Morphology

A major inshight

The datum of a graph G = (V, E) is equivalent to the one of a dilation.
Precisely, the neighborhood operator I is a dilation

Ve V,I(v)={ue V]|(v,u) € E}

m Vincent, 1989 - Signal Processing
m Heijmans & Vincent, 1992, (in a book)
m Cousty, Najman, Dias, F., Serra, J., 2013 - CVIU
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Outline

Outline

What is a graph

Thin objects filtering

Shape-spaces and connected filtering
ﬂ Shape-based morphology

E Power watershed and optimization

m Conclusion and perspectives
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What is graph

What is a graph

> A graph is a representation of a set of data where s«
pairs of data are connected by links

> The data are called vertices or nodes
> The links are called edges

> A graph can be weighted
> on vertices
> on edges
> on both edges and vertices
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How to build a graph

m Regular grids
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m Topological issues
m Jordan curve theorem
m Thickness of boundaries
m Merging of adjacent regions
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How to build a graph

m Regular grids

(c) 6-adjacency grid (d) Khalimsky grid  (e) Perfect fusion grid

m Topological issues
m Jordan curve theorem
m Thickness of boundaries
m Merging of adjacent regions

L. Najman, H. Talbot: GBMM



What is a graph

How to build a graph

m Spatially-variant grids

3

—— - VAN

Removing high-gradient edges Keeping the edges of a
minimum spanning tree
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What is a graph

How to build a graph

m Spatially-variant grids

Fig. 3. Closing of an image by an amoeba. The amoeba does not cross the
contour and as such preserves even the small canals.

Amoebas: neighborhoods as Nearest neighbors in
balls of geodesic distance a feature space
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What is a graph

How to build a graph

m Spatially-variant grids

SN
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(a) (b) ©

Fig. 2. Clustering Sets: (a) The original image X illustrates five separate
objects which expanded by v yield (b) the sets making up the cluster.

(c) By ir the connected its of ¥(X) with X, the

operator I'V(X) extracts the cluster of the previously disconnected

objects.
Second order Complete graph
connectivity (as in non-local means)
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What is a graph
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m Region adjacency graphs
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What is a graph

How to build a graph

m Triangular meshes and alpha-shapes
a b

Fig. 2. (a) 2D point set S; (b) Delaunay triangulation Del(S) or infinite-
complex(S); (c) opt-complex (a a simplicial complex) C_opt(S)
triangulated by Del_opt(S); (d) opt-shape as a

polytope S_opt(S).

3D surface Cloud points
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What is a graph

Discrete calculus

Important idea

m Differential calculus can be written in an algebraic form.

m Exact solution on a graph can be computed (no approximation)

Combinatorial Continuous Max-Flow [couprie , siAM 2011]

CCMF CCMF CCMF
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What is a graph

Discrete calculus

Important idea

m Differential calculus can be written in an algebraic form.

m Exact solution on a graph can be computed (no approximation)

Combinatorial Continuous Max-Flow [couprie , siAM 2011]

I
(a) Network and true membership after split (b) Classification using CCMF
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What is a graph

Discrete calculus

Important idea

m Differential calculus can be written in an algebraic form.

m Exact solution on a graph can be computed (no approximation)

Dual-Constrained Total-Variation [couprie , SIAM 2013]

Fatail |

NonLocal DCTV
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What is a graph

Discrete calculus

Important idea

m Differential calculus can be written in an algebraic form.

m Exact solution on a graph can be computed (no approximation)

rained Total-Variation [couprie , SIAM 2013]

(a) Original mesh (b) Noisy mesh (c) DCTV regularization
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Thin objects filtering

Outline

Thin objects filtering
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Thin objects filtering

Thin objects filtering

Thin objects are fragile

m Thin objects are much longer than they are wide
m In 3D, this include line-like and plane-like objects
m No isotropic neighborhood fits everywhere in them

m This means that spatially-invariant filtering cannot work in this
case.
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Thin objects filtering

Vessel reconnection

Vessel connectivity

m Connectivity is crucial for vessel identification and classification

(i.e. vein, artery). We need this information for instance for pre-op
planning.

m However noise causes disconnections and denoising typically is not
enough to reconnect.

m So we need to be more " forceful”.
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Thin objects filtering

Spatially-variant morphology (SVMM)

Reconnection must be spatially variant

m A natural idea for a morphologist might be to use openings or
closings for reconnecting disconnected vessels.

m However, using standard morphology with a spatially invariant
structuring element will not work

] A A
VL  ie e
[ ] [ ]
(a) Noisy vessels (b) SI closing (c) SV closing
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Thin objects filtering

SVMM definition

SV and adjunction

m Defining a SV erosion or dilation is easy

m Defining their SV adjunct dilation or erosion (resp.) is not so easy
Vx € LVy e M, 6(x) <y <= x<e(y)

m We still have dg(/) = VpeB I adjunct to eg(l) = /\peé Ip

m However, we need to consider the full definition of the transpose
of a SE

B(x) = {y | x € B(y)}, (1)
m In the Sl case, B(x) = —B(x), but not in the SV case.

m It is possible to compute it but inefficient in the SVMM case.

m Fortunately we have an alternative.
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Thin objects filtering

Adjunct erosion computation

L’ S Imax

-

Figure: Spatially variant dilation

This is easy to compute.
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Thin objects filtering

Adjunct erosion computation

o

pr
-
]. -

Figure: Spatially variant adjunct erosion with computed SE

This can be expensive to compute.
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Thin objects filtering

Adjunct erosion computation

* (1"
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Figure: Spatially variant adjunct erosion alternative definition

This operator is equivalent to the adjunct erosion, and is as efficient to
compute as the initial dilation.
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Thin objects filtering

More formally: morphology on graphs

m Let (E,I') be a graph with vertices E and oriented edges I (a.k.a
arcs). if x is a vertex, we denote I'(x) its successors in the graph.

m Let S € E be a subset of E, then
er(8) ={l(x),x € §} (2)

m Let ¢ be an operator on (E, ), then we define the dual of ¢ for

any subset S of E, as ¢*(S) = (S), where S is the set
complement of S.

m Then, the adjunct of er is:
6|' = 5’r(71, (3)

where (E,[ 1) is the symmetric graph of (E,T), i.e. where all the
edge orientations have been reversed.
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Thin objects filtering

End of formalities

m This extends the standard erosions and dilations, which correspond
to I being a regular, reflexive, symmetric graph.

m E.g, with E arranged in a regular square grid, [ the 4-connected
reflexive connectivity, this defines the standard erosion / dilation
pair with the 4-connected neighborhood.

m Arbitrary structuring elements are defined by the equivalent graph
connectivity.

m Openings and closings are defined as usual:

Y =droer (opening) (4)
¢r =erodr (closing) (5)
m Grey-level operators are formally defined by threshold

decomposition, but implemented efficiently with a max or min
operator.
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Thin objects filtering

A tubular objects filtering procedure

Filtering pipeline

m Filter the image to eliminate noise with an efficient NLM
implementation (MPI + GPU , 5s for a 200 x 200 x 200 image).
m Detect tubular objects using Frangi's vesselness

m Reconnect vessels with a spatially variant closing.

No problem in theory, however to reconnect vessels we require a dense
direction field.
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Thin objects filtering

Direction field

Dense direction field

We need to:

m Estimate vessel directions from the Hessian eigenvectors

m Robustify these directions by sampling them near the center of the
vessels

m Dilate the direction field

m Perform the SV closing with a segment oriented along these
directions
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Thin objects filtering

SV closing illustration

= =

L. Najman, H. Talbot: GBMM 24/139



Thin objects filtering

closing illustration
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Thin objects filtering

SV closing illustration
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Thin objects filtering

SV closing illustration
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Thin objects filtering

SV closing illustration
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Thin objects filtering

Visual results

Figure: Eye fundus filtering
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Thin objects filtering

Visual results

Figure: Neurite filtering
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Thin objects filtering

Visual results

A Y Qe \\

Figure: 3D image of vessels in the brain
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Thin objects filtering

Phantom for validation

Description and origin

m We use a phantom from [8], which is a 100 x 100 x 100 image
used in a MICCAI workshop.

m It is tortuous and vessel-like

m grey-level with a parabolic intensity from 200 at the center to 150
at the edges. The background is 100, consistent e.g. with TOF
MRA.

m In the following ROC analyses, the triangle indicates best
fully-connected result.

L. Najman, H. Talbot: GBMM 26/139



Thin objects filtering

Validation

Figure: Level of noise standard deviation o = 10
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Thin objects filtering

Validation

Figure: Level of noise standard deviation o = 20
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Thin objects filtering

Validation

° ~— Original ir,nage o
p --- Anisotropic diffusion filtered
MH-filtered
= == NL-filtered
-= NL-MH-filtered
° r T T Fp T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Figure: Level of noise standard deviation o = 40
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Thin objects filtering

Validation

r
0.0 0.2

Figure: Level of noise standard deviation o = 80

Notice that the filtered phantom remains connected even at very high
noise levels.
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Thin objects filtering

Discussion

m Noise reduction achieved with non-local approaches, orientation
measured by vesselness, reconnection achieved by Spatially Variant
morphology.

m Combining noise reduction techniques with morphology allows us
to achieve extremely robust results for thin object detection

Publications

This work is described in greater detail in [25], as well
as [26, 22, 23, 24, 6, 7, 17].
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Thin objects filtering

Discussion and challenges

m This pipeline is effective but requires the tuning of a number of
parameters ;

m It requires significant hardware to be sufficiently fast

m Vessel detection is limited by the vesselness measure, which is not
very effective

m It still needs to be evaluated on larger dataset, e.g. full brain
vascular network, but annotated data is difficult to obtain.
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Thin objects filtering

VIVABRAIN project

Objective: Vascular network analysis from brain MRA data

m Filtering
Improve images (Denoising, contrast enhancement)
m Segmentation
Detecting the vascular network
m Post-processing
Reconnexion, quantitative data analysis: directions, diameter,
vessel density ...)
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Thin objects filtering

Filtering aspect

A new filtering method to improve existing segmentation pipeline

2 complementary axes :

m Noise reduction

m Vascular network contrast
enhancement

Maximum intensity
projection
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Classical tubular segmentation

Intensity of Second-order
the image derivative
& -profile A2 <0
§ 3 ]
&7 -profile A1 ~0
o v o v
&-profile [ \ As <0
0 z z

Figure: Classical approach using the Hessian
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Thin objects filtering

Errors due to scale-space

(a) Initial image (b) Gaussian filter result (c) Hessian-based filter re-  (d) Expected result
sult

Figure: Scale-space filtering problem
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Thin objects filtering

Errors due to locality

/ Not a curvilinear

structure
f . Curvilinear
: structure

|7

Not a curvilinear
structure

(a) (b)

Scale space methods use local neighborhoods and
are susceptible to misinterpretation at some scales.

L. Najman, H. Talbot: GBMM 34/139



Thin objects filtering

Proposed solution

m Scale selection and combination is a challenging problem in
traditional scale-space methods.

m One solution is to use semi-local neighborhoods, i.e. that gather
information over long distances at all scales.

m We propose the use of paths.
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Thin objects filtering

Adjacency graph

A path, a, is a set of neighboring pixels on a graph defining an
adjacency relation x — y:

a=(ar, a2, ...,aL) Si ak — aks1

Adjacency graph (black)
and vertical path a of length 4
(blue).
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Thin objects filtering

Multiple orientations

Filtering of an image by a path opening

Preserving thin structures in arbitrary orientations imposes to filter the
image by several paths each using a particular adjacency graph.

The 2D space is discretized in 4 different orientations :

-> AN I
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Thin objects filtering

Multiple orientations in 3D

In 3D, the discrete space is discretized in 7 different orientations :
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Thin objects filtering

Path filtering

Example binary path opening

ap = \{o(a),a € N (X)}

Set of all pixels belonging to path a.

I'IL . Set of all paths of length L.
Horizontal Vertical Dlagonale 1 Diagonale 2
* Max

™|

5 N

Y
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Thin objects filtering

Principle

Path definition relaxation

A path can now admit K consecutive noise pixels between path pixels

This makes it possible to preserve partially disconnected thin/tubular
structures :

Path with L = 10 and K = 1 noise pixel

This notion is different from that of path incompleteness by Heijman et
al, it was proposed by F. Cokelaer [5] and is simpler to implement.
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Thin objects filtering

Example

RPO Example on a synthetic, noisy 2D image (centered AWGN o = 20)

Initial image 50x50px RPO L=10, K=1
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Thin objects filtering

The 3D case is more complicated than 2D

2 Types of structures : 3 Types of structures :

Fibres and Blobs Tubes, Planes and Blobs

18 [je

RPO preserves only fibres if blobs ~ RPO preserves both tubes and
are not too big. planes.

An RPO by itself preserves more than just tubes in 3D images:
L. Najman, H. Talbot: GBMM 42/139




Thin objects filtering

Principle

Hypothesis

Planar structures should be detected in at least one more orientation
than tubular structures

Test of this hypothesis on 3 synthetic structures :

Tube Plane Half-ellipsoid surface
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Thin objects filtering

Hypothesis testing

Test :
Filtering 100 3D images of each structure and measuring the number
of RPO orientations still containing the structure after filtering

Histogram of the number of orientations preserving the structure:

60;

40|
40 % 35
o o 9
H 540 £
230 o 225
° 5 30 5
o] o} g 20
3
£ £x Eis
2 2 2
10
- 10!
5|
12 5 6 7 T2 i s %1 3 3. 4 5 6 7
Number of non zero orientations for each tube Number of non zero orientations for each plane Number of non zero orientations for each ellipse
Tubes Planes Half-ellipsoids
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Thin objects filtering
Methodology

New operator
We order the result of each RPO orientation pixelwise and compute

RORPO = RPO; — RPO;

RPO; : Result of standard RPO (max of all RPOs)
RPO; : The i — th rank of the RPO.

Four RPO filtered images

I

Sortlng

RPO]_ RPO>  RPO3  RPOg4
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Thin objects filtering

Robustness test

We compute the RORPO error rate on 100 random synthetic structure
of each type.

%error = % x 100
NDpixels

nberor: number of false negative pixels for the tubes and of false
positifs for the planes and half-ellipsoids.

Occurence
Occurence
Occurence

100 % Z % Too

20 20 60 80
Percentage of errors

2 3
Percentage of errors

Tubes (m = 4%) Planes (m = 0%)  Half ellipsoids (m = 4%)

20 40 60 80
Percentage of errors
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Thin objects filtering

Multi-scale approach

RPO-RPO
Scale 1

RF’O RPO
scale | -

Fusion

RPO RPO
Scale 3

47/139
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Thin objects filtering

Multiscale Principle

RPO_RPO
L,

g -]

RPO_RPO

G A Max
é é
Contrast
Enhancement

RPO_RPO
Ls
> -
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Thin objects filtering

Comparisons

We performed qualitative comparisons of various methods according to
four criteria on a full cerebral MRA

m Capacity to reduce background noise
m Capacity to detect large blood vessels
m Capacity to detect small blood vessels

m Presence of artifacts

RORPO with classical adjacencies and a multiscale approach based on
path lengths seems to provide the best compromise.
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Thin objects filtering

Computing directions from RORPO

[200] 25 | 40 [ 51 [233[ 12 [ 37|
Cl?,l CGQ C€3 Cdl Cdg Cd3 Cd4

Ranking

[233]200] 51 [ 40 [ 37| 25| 12|
Cdg Cel C(il C€3 Cd_l CGQ Cdg

orientations orientations which do not
of interest detect the tubular structure

Figure: Computing directions from RORPO can be done by averaging the
directions of high response.
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Thin objects filtering

Orientation results (in 2D)

Figure: Orientation feature in 2D
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Thin objects filtering

Brain MRA result

Initial image MIP Length-based multiscale RORPO
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Thin objects filtering

MRA Result

Initial image Multiscale RORPO
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Thin objects filtering

Comparison with Frangi vesselness

Proposed method Optimized Frangi vesselness
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Thin objects filtering

Quantitative comparison: input data

(a) CCM=0.605,
Dice=0.634

Figure: Synthetic image: (a) maximum intensity projection and (b) isosurface.
(c) Ground truth.
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Thin objects filtering

Quantitative comparison: filtering response

“ "-.'-. .'t',h'

(a) CCM=0.88,Dice=0.89 (b) CCM=0.71,Dice=0.73 (c) CCM=0.66,Dice=0.65

Figure: Filtered synthetic image: maximum intensity projection. (a) RORPO.
(b) Frangi's vesselness. (c) and RPO-top-hat.
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Thin objects filtering

Quantitative comparison - ROC analysis

== RORPO v std=15

= RPO Top-Hat 2 v std=20
* Frangi's Vesselness| o ostd=25
v Initial Image v std=30
50 100 150 200 250 300 50 100 150 200 250 300
FPR
(a) (b)

Figure: ROC curves on synthetic data. (a) Comparison of the three filters,
plus the native image. (b) Noise robustness of the RORPO filter.
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Thin objects filtering

Quantitative Comparison

MICCAI Rotterdam Coronaries Database

i

TPR

— RORPO
— Frangi's Vesselness

2000 2000 6000 8000 10000

Figure: ROC curves of RORPO and Frangi's Vesselness on the Rotterdam
repository. For both filtering the central curve is the mean ROC curve and the
two others are the mean plus or minus one standard deviation ROC curve.
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Thin objects filtering

Quantitative comparison, synthetic data

1.0 | |
0.8} --;:‘.T-q.n-l-‘a-l._-_.,_.__l:.: — :
A5

== RORPO

. == OOF \
E anm HDCS

...... EV
0.4 |
0-2 nlllnllnlnnll\wnlhnlluu _

%.0 0.5 5 N |

FPR

Three-way ROC analysis RORPO vs. OOF [11],
HDCS [13] and Frangi Vesselness (FV)
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Thin objects filtering

Quantitative comp., Heart Coronaries

(c) MCC = 0529 (d) MCC = 0405
Ground truth (a) : RORPO (b), OOF [11] (c), Frangi (d)
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Thin objects filtering

Orientation feature 3D

Orientation feature in 3D, Heart data: RORPO (a) vs Frangi Vesselness (
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Thin objects filtering

Tubular structures segmentation

m So far we have proposed a solution for curvilinear structure
filtering.

m Segmentation of more complex structures that include
tubes/cylinders can be built from this.

m We propose to use a variational framework by improving Total
Variation (TV) to include a directional component.
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Thin objects filtering

Variational framework

We consider a convex variational framework

in F(u,f)+ AG(u).
mip F(u, F) + AG(u) ©)
m Here F is a data fidelity term and G a regularization.
m f is the input data and u the desired result.

m Typically F is associated to a noise model and G to an image
model.

= A common image model is the Total Variation (TV)
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Thin objects filtering
Standard TV

This is isotropic standard TV regularization term (in 2D):

VW) = |Vuloa= Y (V)2 +(Va),)? ()

0<ij<N

where Vu = ((Vu)*, (Vu)”) is the 2D gradient.
It is classical in mathematics, and was proposed for image
regularization in [18] (ROF model).
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Thin objects filtering
Directional TV

We define a directional gradient, Vp € XP:

m We first define a span (vi,...,vp) of p unitary vectors.

m This span contains all the discrete undirected orientations in a
k x k neighborhood

m then:
Vou = (Dl o (Vgu)l, -, DPo (Vdu)1> (8)
(Vou)ij = Di;(Vau)ijvi+ -+ Dy(Vau)f vp (9)
m with D9 € X, 1 < g < p aweight image such that:

Df; = d®ij + (1 — i) (10)
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Thin objects filtering

Link with RORPO

m ® € X is a vesselness-like intensity feature normalized to the
interval [0, 1]
= (d')jequ,p], are computed from an orientation field

Span of vectors in a 3 x 3 neighborhood.

We used the RORPO response as the vesselness feature and the
orientation field computed from RORPO.
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Thin objects filtering

Directional TV idea

(a) TV (b) Weighted TV [60] () Directional TV

Directional TV idea

m Standard TV will penalize all edges identically; weighted TV may
attempt to penalize edges less in a curvilinear object.

m A directional feature will not penalize edges inside a curvilinear
object
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Thin objects filtering

Directional TV edges

on|oO-

(b) Vu () Viu

Theoretical edge weights

m Thin, curvilinear object are all edges, and so are easily filtered out
in standard/weighted TV.

m A directional TV will filter only along the direction of the
curvilinear object, preserving it.
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Thin objects filtering

Segmentation model

Our model is base on TVp, as follows:

(11)

minimize (cf, u)
u€e[0,1]NxN

m |[Vpul||21 is the directional Total Variation

m (cr, u)F is the Chan et al. data fidelity term [3] where
(cr)ij = (c1 — fij)? — (co — £;;)? and (u, v) is the Frobenius
product.

m The scalars ¢; and ¢, are respectively the foreground and
background constant and f is the initial image.
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Thin objects filtering

DRIVE segmentation result

(c) Chan model (d) Proposed model

2D Results on DRIVE



Thin objects filtering
DRIVE result details

(e) box 1 (f) box 2 (g) box 3

2D Result on DRIVE (details) top: standard TV ; bottom: directional TV
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Thin objects filtering

DRIVE numerical results

Our segmentation result compare favourably with the state of the art.
Note that some learning-based approaches can still outperform these
results.

TP TN Acc

Standard TV 0.656 | 0.985 | 0.9421
Directional TV 0.690 | 0.981 | 0.9434
Staal [20] - - 0.9442
Human observer - - 0.9470

Figure: Quantitative segmentation results on the DRIVE database.
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Thin objects filtering

Conclusion

We have studied a thin object filtering methods called RORPO
Associated with a multiscale approaches based on path length
Our method is effective at significantly reducing background noise
while simultaneously suppressing non-tubular structures.
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Thin objects filtering

Perspectives

Quantitative evaluation of our results :
m Use phantoms produced by VascuSynth
m Use ground truth from heart MRA data.
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Thin objects filtering

Perspectives

m Produce images of scales

m Adapt the path operator slidework to the max-tree/min-tree
slidework

m This would allow discriminating objects on more complex
measures than mere length

m Think about incorporating robustness to max-trees /
min-trees
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Thin objects filtering
Literature on path operators

Definitions and early algorithms [2, 9, 10]
Faster algorithms [1, 21]

Extension to 3D and regularisation [12]
RPO and 3D [5], [4]

Applications [27, 28, 29, 19]

RORPO [15, 16, 14]
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Shape-spaces and connected filtering

Outline

Shape-spaces and connected filtering

L. Najman, H. Talb:

GBMM 77/139



Shape-spaces and connected filtering

Image representations

Decomposition into primitive or fundamental elements that can be
more easily interpreted:

Functional decompositions;
Multiresolution decompositions;
Multi-scale representations;

Threshold decompositions;

Hierarchical representations.

Amplitude Phase
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Shape-spaces and connected filtering

Image representations

Decomposition into primitive or fundamental elements that can be
more easily interpreted:

Functional decompositions;

Multiresolution decompositions;

m
[

m Multi-scale representations;
m Threshold decompositions;
m

Hierarchical representations.
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Shape-spaces and connected filtering

Image representations

Decomposition into primitive or fundamental elements that can be
more easily interpreted:

Functional decompositions;
Multiresolution decompositions;

m
[

m Multi-scale representations;
m Threshold decompositions;
m

Hierarchical representations.

Not mutually exclusive.
Properties inherited from those of underlying operations.
Choice driven by the application needs.

L. Najman, H. Talbot: GBMM 78/139



Shape-spaces and connected filtering

Connected operators

What's connected operators ?

Filtering tools that merge flat zones.

= No new contours, Leveling with marker.
m Keep contours’ position. f : input,

h : marker,

g : result.
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Shape-spaces and connected filtering

One popular implementation (saembier & wikinson, spm, 2009]

Tree
construction
Image
f
Tree
filtering
Image
|mage restitution
-
fv
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Shape-spaces and connected filtering
Level sets and components

F(x)
61

5

0 > X
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Shape-spaces and connected filtering

Level sets and components

0 > X
F3={x| F(x) > 3}.
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Shape-spaces and connected filtering

Level sets and components

0 > X
Fi = {x | F(x) > k}.
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Shape-spaces and connected filtering

(Max) component tree

F(x)
61

5

0 > X



Shape-spaces and connected filtering

(Max) component tree

F(x)
61

5

Fs = {x | F(x) > 5}.



Shape-spaces and connected filtering

(Max) component tree

F(x)
61

5

Fs = {x| F(x) > 4}.



Shape-spaces and connected filtering

(Max) component tree

F(x)
61

5

F3 ={x| F(x)>3}.



Shape-spaces and connected filtering

(Max) component tree

F(x)
61

5

Fo={x| F(x) > 2}.
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(Max) component tree

F(x)
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Shape-spaces and connected filtering

(Max) component tree

F(x)
61

5

Fo ={x | F(x) > 0}.



Shape-spaces and connected filtering

(Max) component tree

F(x)
61




Shape-spaces and connected filtering

(Max) component tree

Components + inclusion relationship = component tree.
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Shape-spaces and connected filtering

Some of the many possible trees

AUBUE

AUBUCUE

AUBUCUDUE

Tree of shapes

L. Najman, H. Talbot: GBMM

A D

AUB E CuD

AUBUC BUCUDUE

AUBUCUDUE AUBUCUDUE
Max—tree Min—tree

AUBUCUD

AUBUCUDUE

Binary Partition Tree
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Shape-spaces and connected filtering

Some link with Morse's Theory

Important idea

Some nodes are more important than others
m Leaves & “Extrema”
m Nodes with more than one child < “Saddle points”

m Hence, filtering is linked with topological persistence
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Shape-spaces and connected filtering

A Topological Approach to Local Feature detection

Y. Xu , ITIP 2014

Interest point detection

m Important for 3D reconstruction, image registration, ...
m Many methods exist: DoG, Corners, MSER, ...
m None of them is invariant to contrast change
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Shape-spaces and connected filtering

A Topological Approach to Local Feature detection

Y. Xu , ITIP 2014

Tree-Based Morse Regions (TBMR)

OAUBUCUDUEUFUGUH  Q AuBUCUDUEUFUGLUH

JAUBUCUDUFUG BuDUEUFUGUH
()AUBUCUDUG (|) EUFUGUH
AUB CuD EUF
A C HO E
Image Min-tree Max-tree

m Select critical nodes (leaves and nodes with several children)

m The scale of a critical node is the largest region containing it and
topologically equivalent in its tree.
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Shape-spaces and connected filtering

A Topological Approach to Local Feature detection

Y. Xu , ITIP 2014

Tree-Based Morse Regions: A Topological

Approach to Local Feature Detection
(Supplementary Material)
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Shape-spaces and connected filtering
Attributes

F(x)
61

5

0 > X




Shape-spaces and connected filtering

Attributes

A connected component.



Shape-spaces and connected filtering
Attributes

F(x)
61

5

0 > X

Area.



Shape-spaces and connected filtering
Attributes

F(x)
61

5

0 > X

Height.



Shape-spaces and connected filtering

Attributes

Volume.
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Shape-spaces and connected filtering

Attributes

Increasing attributes

Increasing attributes : AC B = A(A) < A(B).
Examples : Area, height, volume.

Non-increasing attributes

Shape attributes.
m //A? minimum for a round object,
m Circularity : area/(m x I2,,,),

m Elongation : Lmax/Lmin-

Lmin and Lnax @ Length of the two main axes of the best fitting ellipse.
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Shape-spaces and connected filtering

Filtering with increasing attributes




Shape-spaces and connected filtering

Filtering with increasing attributes

Volume < 5.
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Shape-spaces and connected filtering

Filtering with increasing attributes

Filtered function.
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Shape-spaces and connected filtering

Applications: filtering with increasing attribute

Filtered image (0ut; ;) With a height criteria
Initial image segment 28 (OUtycign) ¢!

Detected ship target (out,,, —out

5°0'19"N
52°062" W

0 400m
[

Ship detection on optical satellite image

C. Corbane et al., International Journal of Remote Sensing 31 (22), 5837-5854
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Shape-spaces and connected filtering

Applications: filtering with increasing attribute

Box detection on a document image
Attribute: (width, height) of the component

G. Lazzara et al., DAS 2014
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Shape-spaces and connected filtering

Some functions and spaces on which to compute the trees

An image

A gradient
m Especially usefull with the watershed

A node-weighted graph
An edge-weighted graph
A weighted mesh

A density function

and more. ..

L. Najman, H. Talbot: GBMM 90/139



Shape-spaces and connected filtering

Filtering with increasing attributes

Pruning the trees

A1, Pruning the leaves = Attribute thresholding.

Non-increasing attributes

How to process the filtering?
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Shape-spaces and connected filtering

A popular implementation of connected filters

Tree
construction
Image
f
Tree
filtering
Image
|mage restitution
-
fv
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Shape-spaces and connected filtering

Shape-space filtering v.x. . icpr, 2012

Tree Tree
| construction construction wn
Mage ——> /Tree T
f o
{I )
Tree o
pruning
w0
>
Image Tree )
restitution restitution o
Image c o
fv )]
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Shape-based morphology

Outline

ﬂ Shape-based morphology
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Shape-based morphology

Construction of second tree representation




Shape-based morphology

Construction of second tree representation
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Shape-based morphology

Construction of second tree representation

(1=
>

—

Level {x|A(x) < 5}.
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Shape-based morphology

Construction of second tree representation

5

Level {x|A(x) < 6}.

)
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Shape-based morphology

Construction of second tree representation

H
o @@@

Level {x|A(x) < 7}.
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Shape-based morphology

Construction of second tree representation

()
- &

Level {x|A(x) < 8}.
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Shape-based morphology

Min-tree of a tree-based image representation

Important idea

Computing a Min-Tree on a node-weighted graph instead of a matrix
image.

Easy thanks to Olena [ievitsin & Geéraud & Najman, 1CIP, 20101, the generic image
processing platform http: //olena. lrde. epita. fr.
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Shape-based morphology

Morphological shapings

0.6

V\A/\/\ (d) © | -

S

w

Attribute

I T I I I
[ 10 20 30 40 50
Nodes

Evolution of circularity on two branches.

Thresholding. Our shaping.

L. Najman, H. Talbot: GBMM 97/139



Shape-based morphology
Morphological shapings

Low threshold of A. Higher threshold of A.



Shape-based morphology

Morphological shapings

Input image. Our shaping 2.

Using a combination of attributes A.
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Shape-based morphology

Application to object segmentation

0.021 T T T T T T T

0.02

0.019

0.018

Energy

0.017

0.016

0.015 L L L L L L L
10 20 30 40 50 60 70

Leaf Nodes Root

Energy in a branch of the tree;
blue : ICIP 2012 energy; green : snake energy.

Object detection principle

Significant minima < Objects.
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Shape-based morphology

Object detection results

Context-based energy estimator

Input image. Objects detected.
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Shape-based morphology

Object detection results

Shape attribute

Objects detected using shape attribute.
Red ones : circularity-based; Green ones : Inverse elongation-based.
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Shape-based morphology

Shape-based lower/upper levelings

ottt

Input image.

Round objects based
upper-leveling.
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Shape-based morphology

Blood vessels segmentation in retinal images

(e) Segmentation.(f) Segmentation.(g) Segmentation.(h) Segmentation.
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Shape-based morphology

Cleaning a manuscript with a shape-based lower-leveling
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(c) Low threshold of A (subtractive).
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(e) Higher threshold of A (subtractive).
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Shape-based morphology
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Saliency maps wajman

(b) Some contours.

(a) Original image.
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Shape-based morphology

Sa | iency Maps najman , PAMI 1996 — Najman, JMIV 2011

(a) Original image. (b) Some contours.
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Shape-based morphology

Sa | iency Maps najman , PAMI 1996 — Najman, JMIV 2011

(a) Original image. (b) Some contours.
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Shape-based morphology

Sa | iency Maps najman , PAMI 1996 — Najman, JMIV 2011

Stacking the contours gives a saliency map [Najman & Schmitt, PAMI, 1996]

(a) Original image. (b) A saliency map.
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Shape-based morphology

Different representations

L. Najman - JMIV - 2011] Mathematical definitions, equivalence between
ultrametric watersheds, saliency maps and trees of segmentations

(a) Original image.

(c) One of the segmentations. (d) Dendrogram.
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Shape-based morphology

Saliency maps can be computed on a mesh
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Shape-based morphology

Object spotting and saliency maps
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Shape-based morphology

Object spotting and saliency maps

Input image. Saliency map.
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Shape-based morphology

Hierarchical simplification based on Mumford-Shah

sy <oy ¢ SN —
Saliency map. Simplified.
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Shape-based morphology

Hierarchical simplification based on Mumford-Shah

;

Original. Saliency map. Simplified.
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Shape-based morphology

Hierarchical simplification based on Mumford-Shah

Original. Saliency map. Simplified.
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Shape-based morphology

Shape oriented saliency maps on the GTSDB dataset

Original. Circular. Triangular.
Method Detection rate Area under curve
Prohibitive | Danger | Prohibitive | Danger
Our 96% 95% 92.16% | 93.10%
Viola-Jones 98.8% 746 % | 90.81% 46.26%
HOG+LDA 91.3% 90.7% 70.33% 35.94%
Hough-like 55.3% 65.1% 26.09% 30.41%

Precision of other methods is 10%. Our precision is 59% (resp. 41%)
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Shape-based morphology
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Shape-based morphology

Smartphone document capture competition (ICDAR 2015)

Input Frame.

Saliency map.

Extracted document.
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Shape-based morphology

Smartphone document capture competition (ICDAR 2015)

Input Frame. Saliency map. Extracted document.

L |
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Shape-based morphology

Smartphone document capture competition (ICDAR 2015)

Input Frame. Saliency map. Extracted document.
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Shape-based morphology

Smartphone document capture competition (ICDAR 2015)

Ranking Method Jaccard Index | Confidence Interval
1 Our2 0.9816 [0.9813, 0.9819]
1 Our 0.9716 [0.9710, 0.9721]
2 ISPL-CVML 0.9658 [0.9649, 0.9667]
3 SmartEngines 0.9548 [0.9533, 0.9562]
4 NetEase 0.8820 [0.8790, 0.8850]
5 A2iA run 2 0.8090 [0.8049, 0.8132]
6 A2iA run 1 0.7788 [0.7745, 0.7831]
7 RPPDI-UPE 0.7408 [0.7359, 0.7456]
7 SEECS-NUST 0.7393 [0.7353, 0.7432]
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Power watershed and optimization

Outline

E Power watershed and optimization
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Power watershed and optimization

The Power watershed framework c couric . pami 2011

Xpq = arngin Z wiiP|xi — xj|7 + Z wiP|x;i — ;]9

e,'jGE v,ieVv
Smoothness term Data term
[ ] [ ] o
l [ ] [ ] [ ]
[ ) [ ] [ ]
X
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Power watershed and optimization

The Power watershed framework c couric . pami 2011

Xpq = arngin Z wiiP|xi — xj|7 + Z wiP|x;i — ;]9

e,'jGE v,ieVv
Smoothness term Data term
wijj = exp_ad(li’lj)
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Power watershed and optimization

The Power watershed framework c couric . pami 2011

Xpq = arngin Z wiiP|xi — xj|7 + Z wiP|x;i — ;]9

e,'jGE v,ieVv
Smoothness term Data term
X = lim x*
pro0” Pd
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Power watershed and optimization

The Power watershed framework c couric . pami 2011

Xpq = arngin Z wiiP|xi — xj|7 + Z wiP|x;i — ;]9

e,'jGE v,ieVv
Smoothness term Data term
* i p E q § W5 q
Xqu = argmin | Wpay |Xi - )<_j| + T’X,- — Xj
X Wmax
eijeEmax eijéEmax
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Power watershed and optimization

The Power watershed framework c couric . pami 2011

o i Ply: — x:|9 Ply: — |9
xp,q—argxmln g wiiP|xi — xj|7 + g w;iP|x; — ]
e;€E vieV

J/

Smoothness term Data term

* H P . .19
Xpq = argmin | wh., E Ixi — xj|T + ¢
X
€jj € Emax
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Power watershed and optimization

Algorithm for the power watershed

Compute a max-tree of the edge-weighted graph
m Maximum spanning tree

Run through all the connected components of the max-tree by
decreasing altitude

m Optimize
min E Ixi — x|
X
ejeconnected component

on the connected component, using the previous computations as
initial conditions
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Power watershed and optimization

Why PW it a watershed?

Watershed cut cousty . PAMI 2009

m In edge-weighted graphs, it is a cut satisfying the drop of water
principle
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Power watershed and optimization

Why PW it a watershed?

Watershed cut cousty . PAMI 2009

m In edge-weighted graphs, it is a cut satisfying the drop of water
principle
m Consistency property: two equivalent characterisations by

m Catchment basins (steepest descent property)
m Dividing lines (drop of water principle)
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Power watershed and optimization

Why PW it a watershed?

Watershed cut cousty . PAMI 2009

m In edge-weighted graphs, it is a cut satisfying the drop of water
principle
m Consistency property: two equivalent characterisations by
m Catchment basins (steepest descent property)
m Dividing lines (drop of water principle)
m Optimality property:
m Characterization by minimum/maximum spaning forests/trees
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Power watershed and optimization

Surface reconstruction using power watershed copic . iswm 2011

=

m Goal : given a noisy set of dots, find an explicit surface fitting the
dots.
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Power watershed and optimization

Surface reconstruction using power watershed

=

m Goal : given a noisy set of dots, find an explicit surface fitting the
dots.
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Power watershed and optimization

How to solve this problem

recover.

m Graph : 3D grid
m Here x represents the object indicator to

_ y.|q72
lim argmln E w;iP |xi — xj]
p—r00

e;€E
st. x(F) =1, x(B) =

m weights : distance function from the set of
dots to fit

Why PW are a good fit for this problem ? Power

. watershed
numerous plateaus around the dots to fit — .
) . . solution
smooth isosurface is obtained
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Power watershed and optimization
Comparisons

Graph cuts Power watershed
Lemptizky-Boykov, Couprie-Bresson-Najman-
CVPR 2007 Talbot-Grady, ISMM 2011
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Power watershed and optimization

Comparisons

Total variation Power watershed
Couprie-Bresson-Najman-
Talbot-Grady, ISMM 2011
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Power watershed and optimization

Comparisons

Total variation Power watershed
Couprie-Bresson-Najman-
Talbot-Grady, ISMM 2011
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Power watershed and optimization

Non-convex diffusion using power watersheds

= Anisotropic diffusion [Perona-Malik 1990]

Image 100 iterations 200 iterations

Goals of this work:

m perform anisotropic diffusion using an o norm to avoid the
blurring effect

m optimize a non convex energy using Power Watershed
[Couprie-Grady-Najman-Talbot, ICIP 2010]
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Anisotropic diffusion and /3 norm

x* = argmin Xj — Xi) + A x; — f;
gx ZU(I G) ZU(/ i)

e;jGE v,ieV

, J

smoothrTess term data fidelity term

a2 Leads to piecewise constant results
Original image PW result
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Power watershed and optimization

Power watersheds: more applications coming soon!

m Spectral clustering
m Image filtering
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Outline

m Conclusion and perspectives
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Conclusion: emerging topics

m Trees for color and multi-modalities images
m A little further with graphs: discrete calculus

m Discrete version of morphological PDE
m Hierarchical optimization
m Links with other computer vision frameworks
m Beyond graphs: other interesting structures
m Directed graphs
m Hyper-graphs
m Simplicial complexes and discrete topological analysis
m New applications with the emergence of big data
m Morphological tools available online

m PINK (C library and tools): http://pinkhq.com/
m MILENA (generic C++ library):
https://www.Irde.epita.fr/wiki/Olena/Milena
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Learning Hierarchical Features for Scene Labeling

C. Farabet , PAMI 2013
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Learning Hierarchical Features for Scene Labeling

C. Farabet , PAMI 2013
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Thank for your
attention !

Mathematical
Morphology

Edited by
Laurent Najman and Hugues Talbot

R

== WWILEY

Pink:  http://pinkhg.com
Olena: http://www.Irde.epita.fr/cgi-bin/twiki/view/Olena
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