

IMC5-1IA (image analysis).

Laurent Najman

Introduction

- What is an image?
 - We will see many examples
- What is image analysis and image processing?
 - We will see many examples
- Software to do image analysis and processing

Introduction

- What is an image?
 - We will see many examples
- What is image analysis and image processing?
 - We will see many examples
- Software to do image analysis and processing

In everyday life

Black and white (binary)

Greyscale

color

Image sequence (video)

Biology – Medical Examples:

Microscopy (blood)

X-Ray

Fonctional MRI (3D+t)

Teledection, Examples:

Radar

Hyperspectral

Lidar

Astronomy (Galaxy in UV)

Bull chamber (particule collision)

Physics, Examples:

Electron microscopy (snowflakes)

Radar interferometry (glacier)

Gas burner (thermal power plant)

Industrial Examples:

Aluminium

Quality control on bottles

2D Bar codes

Introduction

- What is an image?
 - We will see many examples
- What is image analysis and image processing?
 - We will see many examples

Software to do image analysis and processing

Analysis versus processing

- Image Processing: to get a novel image from another one (filtering)
 - Goal: enhance the quality of an image
- Image Analysis: to compute measurements on an image
 - Generally uses some image processing steps
- In this course, we will not present 3D visions (see the Computer Vision course)

Image Processing Image filtering

• Sharpening:

Histogram correction:

Image processing

image Restoration

• Denoising:

• Debluring:

Image processing

Image filtering

Inpainting:

Intelligent resizing:

Line detector

Interest point detection

Segmentation

Object detection

Pattern recognition

• Measure, caracterisation:

Introduction

- What is an image?
 - We will see many examples
- What is image analysis and image processing?
 - We will see many examples

Software to do image analysis and processing

Software Questions

- How to put into action an image processing method?
- Automated, semi-automated or manual solution
- Various types of software
 - Command-line software
 - Programming-environment
 - Libraries of operators
 - Visual programming software
 - Image editing software

Software

Command-line software

User-interface : command line (unix shell type)

Useful for batch processing

- Some examples:
 - Netpbm : http://netpbm.sourceforge.net
 - ImageMagick : http://www.imagemagick.org
 - Pink: http://pinkhq.com

Software programing environments

- Interpreted shell-script in a specific language (open source or private)
- Intermediate level for instructions and data-structures
- Allows for the design of whole processing chains
- A few examples:
 - Matlab : http://www.mathworks.fr/
 - Scilab : http://www.scilab.org/
 - Visilog : http://www.noesisvision.com/
 - Pink+python: http://pinkhq.com

Software Libraries of operators

- Writing of a software in a classical language
- Low level instructions
- More time to write a complete solution
- Many more possibilities
- A few examples:
 - OpenCV (C++): http://sourceforge.net/projects/opencvlibrary/
 - ITK (C/C++) : http://www.itk.org/
 - Olena (C++) : http://olena.lrde.epita.fr/
 - Pink: http://pinkhq.com

Software Image editing software

- For the public-at-large, intuitive user interface
- Useful when we want to quickly process a single image
- More difficult in case of batch processing
- A few examples:
 - Photoshop
 - GIMP
 - ImageJ

Software

Visual programing software

- Chaining processing is simple
- More difficult to begin with
- Allows complex operations
- A few examples :
 - Visiquest (ex-Khoros
 - Labview
 - NeatVision

Some references

- Gonzales and Woods, Digital Image Processing, Prentice Hall
- Pratt, Digital Image Processing, Wiley
- Soille, Morphological Image Analysis, Springer-Verlag
- Najman and Talbot (ed.), Mathematical Morphology, Wiley

Digital Imagery

1. Digital images

- a) Acquisition model
- b) Discretisation / quantization
- c) Formalism
- d) Représentation

Digital imagery Acquisition

Digital imagery Acquisition – other examples

Electron microscope (electron flow)

Digital imagery Spatial discretisation

Pixel = Picture element

Some problems: area estimation, perimeter estimation, sub-pixelic precision

Digital imagery Spatial discretisation

- Resolution means two different things
 - The dimension of the spatial domain spatiale,
 - ex: 1024*860 pixels
 - The size of a pixel,
 - ex: on a aerial photo, the length of a pixel can be as large as 1 meter, in the printing business, we speak in dpi (dot per inch)

Digital imagery Spatial discretisation Subsampling – Aliasing - Moiré

A Moiré Pattern

Digital Imagery

Grey-level quantization

Details, shading, visual quality

Digital Imagery Formalism

A digital image is a function

$$f: E \mapsto V$$

Spatial domain:

$$E \subseteq \mathbb{Z}^2$$
: images 2D ou $E \subseteq \mathbb{Z}^3$: images 3D

Value space V:

$$\{0,1\}$$
 ou $[0..255]^n$ ou \mathbb{R}^n ou \mathbb{N}^n

- -n=1: grey level image
- n= 3 : (pseudo-)color image
- -1 < n < 20: multibands image
- − n>19 : hyperspectral image
- Binary image: equivalent to a set

$$F = \{x \in E \mid f(x) = 1\}$$

Digital Imagery Formalism

Ex: RGB image RGB

RGB: Red-Green-Blue

 $f:[0..511]^2 \mapsto [0..255]^3$

Red chanel

Green chanel

Blue chanel

Digital imagery

Formalism - storage

- Ex: color image, Full HD:
 - -1024 lines, 1900 columns: E=[0..1023]x[0..1899]
 - RGB color on 256 levels : $V=[0..255]^3$
- Problem: a lot of data!
 - Astronomy: 10 000 x 10 000 pixels, pixel values with double precision (64bits), 5 bands

$$\frac{10000^2*8*5}{1024^3} \approx 3.7 \text{ Go}$$

— A video of 2 hours-length, Full HD, 25 img/sec:

$$\frac{1024*1900*3*25*60*60*2}{1024^3} \approx 978.4 \text{ Go}$$

Digital imagery

Formalism – Computation time

- We want to process a HD flow with 25 fps
- The processing needs 100 operations/pixels (linear!)
- We suppose that each operation takes one processor cycle
- What is the frequency that is necessary?

$$1024 * 1900 * 25 * 100 \approx 5 \,\mathrm{GhZ}$$

- We need a specific hardware
 - Parallel computing / GPU / ...

Digital Imagery Representation

- Images are generally store into memory as matrices
- Example for a 2D image

$$\mathbf{F} = \begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,N-1} \\ \vdots & \vdots & & \vdots \\ a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1,N-1} \end{bmatrix}$$

avec
$$a_{ij} = f(x = i, y = j) = f(i, j)$$

Digital Imagery Representation

- Be careful: the processing order is not neutral on algorithmic performance
- On the same image:

Execution time: 1000 ms

Execution time: 200 ms

Inverting the loop order has some importance!