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The family of discrete watersheds

Topological watersheds

Only watersheds that preserve the altitudes of the passes

On pixels

Fusion graphs

Link between thinness,
region merging,
and watersheds

On edges

Watershed cuts

Optimality,
drop of water principle

Power watersheds

Framework for seeded image segmentation
(graph cuts, random walker, . . .)

Energy minimization
q = 2 =⇒ uniqueness

Ultrametric watersheds

Hierarchical segmentation

On complexes

Simplicial stacks

Link between
collapse, watersheds

and optimal spanning forests

Laurent Najman Watershed cuts and Combinatorial Optimization



Watershed Cuts
Power Watersheds for Optimization

Some applications
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Watersheds in edge-weighted graphs ?

Mathematical properties ?

Use of watersheds for optimization ?
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Watershed cuts : definition and consistency
Relative minimum spanning forests : watershed optimality

Edge-weighted graph

Let G = (V ,E ) be a graph.

Let F be a map from E to R.
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Image and edge-weighted graph

For applications to image analysis

V is the set of pixels

E corresponds to an adjacency relation on V , (e.g., 4- or
8-adjacency in 2D)
The altitude of u, an edge between two pixels x and y ,
represents the dissimilarity between x and y

F (u) = |I (x)− I (y)|.
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Regional minima
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Definition

A subgraph X of G is a minimum of F (at altitude k) if :

X is connected ; and

k is the altitude of any edge of X ; and

the altitude of any edge adjacent to X is strictly greater
than k

Laurent Najman Watershed cuts and Combinatorial Optimization



Watershed Cuts
Power Watersheds for Optimization

Some applications

Watershed cuts : definition and consistency
Relative minimum spanning forests : watershed optimality

Extension

a subgraph X

an extension Y of X

Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G.
We say that Y is an extension of X (in G) if X ⊆ Y and if any
component of Y contains exactly one component of X .
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Graph cut

Definition
Let X be a subgraph of G and let S ⊆ E be an edge-set.

We say that S is a (graph) cut for X if S is an extension
of X and if S is minimal for this property, i.e., if T ⊆ S
and T is an extension of X , then we have T = S.
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The church of Sorbier
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Watershed cut

Definition (drop of water principle)

Let S ⊆ E be an edge-set.
We say that S is a watershed cut of F if S is an extension
of M(F ) and if for any u = {x0, y0} ∈ S, there
exist π1 = 〈x0, . . . , xn〉 and π2 = 〈y0, . . . , ym〉 which are two
descending paths in S such that :

xn and ym are vertices of two distinct minima of F ; and

F (u) ≥ F ({x0, x1}) (resp. F (u) ≥ F ({y0, y1})),
whenever π1 (resp. π2) is not trivial.
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Catchment basins by a steepest descent property

The altitude of a vertex x of G , denoted by F (x), is the
minimal altitude of an edge which contains x :

F (x) = min{F (u) | u ∈ E , x ∈ u}

Let π = 〈x0, . . . , xl〉 be a path in G . The path π is a path
with steepest descent for F if, for
any i ∈ [1, l ], F ({xi−1, xi}) = F (xi−1).
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Catchment basins by a steepest descent property

Definition

Let S be a cut for M(F ), the minima of F .
We say that S is a basin cut of F if, from each point of V
to M(F ), there exists, in the graph induced by S, a path with
steepest descent for F .
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Catchment basins by a steepest descent property

Theorem (consistency)

An edge-set S ⊆ E is a basin cut of F if and only if S is a
watershed cut of F .

Contribution
As far as we know, in the literature about discrete
watersheds, no similar property has ever been proved.
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Relative forest

Let X and Y be two non-empty subgraphs of G . We say
that Y is a forest relative to X if :

Y is an extension of X ; and
for any extension Z ⊆ Y of X , we have Z = Y
whenever V (Z ) = V (Y ).
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Minimum spanning forest

The weight of a forest Y is the sum of its edge weights
i.e.,

∑
u∈E(Y ) F (u).

Definition

We say that Y is a minimum spanning forest (MSF) relative to X
if Y is a spanning forest relative to X and if the weight of Y is
less than or equal to the weight of any other spanning forest
relative to X .
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Minimum spanning forest : example
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If Y is a MSF relative to X , there exists a unique cut S
for Y and this cut is also a cut for X ;

In this case, we say that S is a MSF cut for X .
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Watershed optimality

Theorem
An edge-set S ⊆ E is a MSF cut for the minima of F if and only
if S is a watershed cut of F .

Contribution
As far as we know, this is the first result which establishes
watershed optimality.
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Minimum spanning tree

Computing a MSF ⇔ computing a minimum spanning tree

Best algorithm [CHAZEL00] : quasi-linear time

Problem
Can we reach a better complexity for computing watershed cuts ?
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A linear-time algorithm for watershed cuts

Result
We propose the Stream Algorithm.

Stream Algorithm runs in linear time whatever the range of
the input map

No need to sort
No need to use a hierarchical queue

Furthermore, Stream Algorithm does not need to compute
the minima as a pre-processing step.

Contribution
To the best of our knowledge, this is the first watershed
algorithm satisfying such properties
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Conclusion on watershed cuts

Graph cut

MST algorithms
(Boruvska, Prim, Kruskal)

Watershed cut

MSF cut Basin cut

TOPOGRAPHICAL PARADIGMSOPTIMALITY PARADIGMS

Flow cut algorithm
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Conclusion on watershed cuts

In fact, there is more to say on watershed cuts . . .
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Conclusion on watershed cuts

Graph cut

Topological cut

IFT algorithms

MST algorithms
(Boruvska, Prim, Kruskal)

Watershed cut

MSF cut

SPF cut

Basin cut

TOPOGRAPHICAL PARADIGMS

GRAYSCALE−TRANSFORM PARADIGMS

OPTIMALITY PARADIGMS

M−Border cut

(Meyer)
Flooding algorithm

Border cut

Flooding cut

Flow cut algorithm

(Dijkstra, Falcao et al.)

M−Border algorithm
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Edge-weighted graph, revisited

An image seen as a graph G = (V ,E )

Image 3× 3→ Weighted graph 3× 3
3 4

1 3 4
1 3

4 2 2

3 2

Edges are weighted by a similarity measure
i.e. inversely proportional to the image gradient

wij = F ({xi , xj}) = F (u) = exp(−β(I (xi )− I (xj))2).

Seed specification :
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i.e. inversely proportional to the image gradient
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New framework for image segmentation

Given


two real positive numbers p and q
seeds for the background B,
seeds for the foreground F ,

Compute x verifying

min
x

∑
eij∈E

wp
ij |xi − xj |q

Such that x(F ) = 1, x(B) = 0.

Result : segmentation s defined ∀i by si =

{
1 si xi ≥ 1

2 ,

0 si xi <
1
2 .
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Graph Cuts

Problem : compute x

x = argmin
∑
eij∈E

wij
p=1|xi − xj |q=1

Min cut / Max flow duality

Max Flow algorithm

S

T

1
1

2 2

3 4

1 3 4
1 3

4 2 2

3 2

∞

∞
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Graph Cuts : example

favor small boundaries

robust to uncentered seed
placement

Input seeds

Corresponding segmentations
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Random Walker

Combinatorial version of the Dirichlet problem

x = argmin
∑
eij∈E

wij(xi − xj)
2 ← u = argmin

∫
Ω

|∇u|2dΩ
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Random Walker : example

Input seeds

Corresponding probability/potential x

Corresponding segmentations (threshold of x)
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Shortest path forest

take the inverse of the weights

the shortest path starting from
each node to reach a seed node is
computed

Dijsktra algorithm

[Sinop et al. 07] :

lim
p=q→∞

x̄pq = min
x

∑
eij∈E

wij
p=q(xi − xj)

q

F

B
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3

1
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1 1
3

1
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1
1
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1
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1
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Shortest path forest : example

Very
sensitive to
the object
centering
relatively to
the seeds

Input seeds

Corresponding segmentations
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Maximum Spanning Forest (MSF)

maximize the sum of
weights over the edges of a
forest spanning the graph

different labeled nodes have
to belong to different trees

Kruskal, Prim algorithms
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Maximum Spanning Forest (MSF) : example

robust to small seeds

leaking effect

Input seeds

Corresponding segmentations
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Algorithms deriving from values of p et q

Recall the energy function : x̄pq = minx
∑

eij∈E wp
ij |xi − xj |q

HHH
Hq
p

0 finite ∞

1 Reduction to seeds Graph cuts
Max Spanning Forest

[Allène et al. 07]

2 `2-norm Voronoi Random walker
Max Spanning Forest
[Couprie et al. 09]

∞ `1-norm Voronoi `1-norm Voronoi
Shortest Path Forest

[Sinop et al. 07]
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The powerwatershed algorithm
Qualitative and quantitative comparison

Algorithm for the case p =∞, variable q

x̄q = lim
p→∞

x∗p,q

Power watershed algorithm (outline)

Build an MSF outside of plateaus, and optimize on plateaus∑
eij∈plateau

|xi − xj |q

Theorem (Convergence)

If q > 1, the potential x̄pq converges, as p →∞, towards the
potential x̄q obtained by the Power Watershed algorithm.
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Some applications

A unifying framework for combinatorial optimization
The powerwatershed algorithm
Qualitative and quantitative comparison

Convergence of RW when p →∞ towards PW

Input seeds

PowerWatershed q = 2

Random Walker p = 1...30

Random Walker p = 30
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A unifying framework for combinatorial optimization
The powerwatershed algorithm
Qualitative and quantitative comparison

Theorems

Theorem (MSF cut)

The cut obtained by the Powerwatershed algorithm is a MSF cut.

Theorem (Watershed cut)

The cut obtained by the Powerwatershed algorithm is a watershed
cut of the graph morphologically reconstructed from the seeds.

Theorem (Uniqueness)

When q > 1, the solution x∗ to the minimization of

limp→∞min
x

∑
eij∈E

wij
p|xi − xj |q

is unique.
(Thus, when q > 1, the solution x̄ of the Powerwatershed algorithm is unique.)
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Some applications

A unifying framework for combinatorial optimization
The powerwatershed algorithm
Qualitative and quantitative comparison

Powerwatershed (q=2) : example

robust to small seeds size

less leaking than with
standard Maximum
Spanning Forest

Input seeds

Corresponding probability x

Corresponding segmentations (threshold

of x)
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Powerwatershed (q=2) : example

Input seeds

Powerwatershed (q = 2) Prim algorithm for MSF
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Generality of the framework

Possibility to add unary terms to the energy function

min
x

∑
eij∈E

wp
ij |xi − xj |q

+
∑
vi

wFi
p|xi − 1|q +

∑
vi

wBi
p|xi |q
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Image Graph Cuts MaxSF

Contribution
To the best of our knowledge, this is the first time that watershed
is used in other applications than seeded segmentation
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Optimal multilabels segmentation

More than 2-labels segmentation : NP-hard for Graph cuts

Exact n ≥ 2 labels segmentation for the other algorithms :

n solutions x1, x2, ...xn computed

xk computed by enforcing
{

xk(nk) = 1
xk(nq) = 0 for all q 6= k.

Each node i is affected to the label for which xk
i is maximum :

si = argmax
k

xk
i

Input seeds Segmentation by PowerWatershed (q = 2)
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Qualitative and quantitative comparison

Algorithms behavior on plateaus

Seeded image Graph Cuts Shortest Paths, MaxSF Random Walker, PW q = 2
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Qualitative and quantitative comparison

Algorithms comparison

Evaluation on Berkeley database

Ground truths
2 sets of seeds to study robustness to seeds centering :

1 well centered seeds
2 less centered seeds
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Qualitative and quantitative comparison

Quantitative Results

Dice coeff. between ground truths and the algorithms results on
Berkeley database with the centered seeds.

91,2
91,8 92,1

91,4 91,3

70
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100

Graph cuts Random Walker Shortest Paths MSF PowerWatersheds 
q=2

Mean of Dice coefficient (%)
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Examples

Input seeds Graph Cuts Random Walker

Shortest Paths Max Spanning Forests Power Watersheds q = 2
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Quantitative Results

Dice coeff. between ground truths and the algorithms results on
Berkeley database with the less centered seeds.
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Examples

Input seeds Graph Cuts Random Walker

Shortest Paths Max Spanning Forests Power Watersheds q = 2
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Computation time 2D
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Computation time 3D

Untitled 1 Untitled 2 Untitled 3 Untitled 4
Graph Cuts

Random 
Walker

Power 
Watersheds 
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Shortest 
Paths Forest

Max Spanning 
Forest (Prim)
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Which algorithm to use ?

Graph Cuts :
good fit for 2D image segmentation in 2 labels
too slow for 3D segmentation

Shortest Paths : segmentation of well centered seeds around
the object
Random Walker :

efficient with uncentered seeds
defined behavior on plateaus

Max SF :
better segmentations than SPF with uncentered seeds
fast → 3D segmentation

Powerwatershed q = 2 :
MaxSF properties
less sensitive to leaking than standard MaxSF
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The powerwatershed algorithm
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Conclusion

New framework unifying Graph Cuts, Random Walker, MSF
and SPF.

New optimization algorithms family with variable q.

The q = 2 algorithm shows segmentation improvement while
retaining watershed speed.

Unary terms formulation makes powerwatersheds useful
beyond segmentation.

Contribution
The power watershed leads to a multilabel, scale and contrast
invariant, unique global optimum obtained in practice in
quasi-linear time

Laurent Najman Watershed cuts and Combinatorial Optimization



Watershed Cuts
Power Watersheds for Optimization

Some applications

A unifying framework for combinatorial optimization
The powerwatershed algorithm
Qualitative and quantitative comparison

Conclusion

New framework unifying Graph Cuts, Random Walker, MSF
and SPF.

New optimization algorithms family with variable q.

The q = 2 algorithm shows segmentation improvement while
retaining watershed speed.

Unary terms formulation makes powerwatersheds useful
beyond segmentation.

Contribution
The power watershed leads to a multilabel, scale and contrast
invariant, unique global optimum obtained in practice in
quasi-linear time

Laurent Najman Watershed cuts and Combinatorial Optimization



Watershed Cuts
Power Watersheds for Optimization

Some applications

A unifying framework for combinatorial optimization
The powerwatershed algorithm
Qualitative and quantitative comparison

Conclusion

New framework unifying Graph Cuts, Random Walker, MSF
and SPF.

New optimization algorithms family with variable q.

The q = 2 algorithm shows segmentation improvement while
retaining watershed speed.

Unary terms formulation makes powerwatersheds useful
beyond segmentation.

Contribution
The power watershed leads to a multilabel, scale and contrast
invariant, unique global optimum obtained in practice in
quasi-linear time

Laurent Najman Watershed cuts and Combinatorial Optimization



Watershed Cuts
Power Watersheds for Optimization

Some applications

A unifying framework for combinatorial optimization
The powerwatershed algorithm
Qualitative and quantitative comparison

Conclusion

New framework unifying Graph Cuts, Random Walker, MSF
and SPF.

New optimization algorithms family with variable q.

The q = 2 algorithm shows segmentation improvement while
retaining watershed speed.

Unary terms formulation makes powerwatersheds useful
beyond segmentation.

Contribution
The power watershed leads to a multilabel, scale and contrast
invariant, unique global optimum obtained in practice in
quasi-linear time

Laurent Najman Watershed cuts and Combinatorial Optimization



Watershed Cuts
Power Watersheds for Optimization

Some applications

A unifying framework for combinatorial optimization
The powerwatershed algorithm
Qualitative and quantitative comparison

Conclusion

New framework unifying Graph Cuts, Random Walker, MSF
and SPF.

New optimization algorithms family with variable q.

The q = 2 algorithm shows segmentation improvement while
retaining watershed speed.

Unary terms formulation makes powerwatersheds useful
beyond segmentation.

Contribution
The power watershed leads to a multilabel, scale and contrast
invariant, unique global optimum obtained in practice in
quasi-linear time

Laurent Najman Watershed cuts and Combinatorial Optimization



Watershed Cuts
Power Watersheds for Optimization

Some applications

A unifying framework for combinatorial optimization
The powerwatershed algorithm
Qualitative and quantitative comparison

Conclusion

New framework unifying Graph Cuts, Random Walker, MSF
and SPF.

New optimization algorithms family with variable q.

The q = 2 algorithm shows segmentation improvement while
retaining watershed speed.

Unary terms formulation makes powerwatersheds useful
beyond segmentation.

Contribution
The power watershed leads to a multilabel, scale and contrast
invariant, unique global optimum obtained in practice in
quasi-linear time

Laurent Najman Watershed cuts and Combinatorial Optimization
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Some applications

Anisotropic filtering
Surface reconstruction

Non-convex diffusion using power watersheds

Anisotropic diffusion [Perona-Malik 1990]

Image 100 iterations 200 iterations

Goals of this work :

perform anisotropic diffusion using an `0 norm to avoid the
blurring effect

optimize a non convex energy using Power Watershed
[Couprie-Grady-Najman-Talbot, ICIP 2010]
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Some applications

Anisotropic filtering
Surface reconstruction

Anisotropic diffusion and `0 norm

x∗ = argmin
x

∑
eij∈E

σ(xi − xj)︸ ︷︷ ︸
smoothness term

+ λ
∑
vi∈V

σ(xi − fi)︸ ︷︷ ︸
data fidelity term

x

σ(x) = 1− e−αx
2

α = 1
α = 10

α = 100

Leads to piecewise constant results
Original image PW result
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Some applications

Anisotropic filtering
Surface reconstruction

Surface reconstruction from a noisy set of dots

⇒

Goal : given a noisy set of dots, find an explicit surface
fitting the dots.

Joint work with Xavier Bresson
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Some applications

Anisotropic filtering
Surface reconstruction

How to solve this problem

Graph : 3D grid

Here x represents the object indicator to
recover.

x̄ = lim
p→∞

argmin
x

∑
eij∈E

wij
p|xi − xj |q

s.t. x(F ) = 1, x(B) = 0

weights : distance function from the set
of dots to fit

Why PW are a good fit for this problem ?
numerous plateaus around the dots to fit →
smooth isosurface is obtained

Power
watershed
solution
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Some applications

Anisotropic filtering
Surface reconstruction

Perspectives

Future work
Study of the different energies possibly minimized in this
framework
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Some papers on watershed cuts

Bibliography on watershed cuts
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Some papers on Power watersheds
Bibliography on powerwatersheds
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Couprie, C., Grady, L., Najman, L. and Talbot, H. :
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Anisotropic filtering
Surface reconstruction

Questions

Source code available from

http ://sourceforge.net/projects/powerwatershed/
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