Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Playing with Kruskal:
algorithms for morphological trees
in edge-weighted graphs

Laurent Najman Jean Cousty Benjamin Perret

Labax
BEZUT

Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge, A3SI, ESIEE
UNIVERSITE

Mennismer ESIEE

PARIS

Tuesday 28 may 2013

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Highlights

- A quasi-linear algorithm that computes a binary partition tree by
altitude ordering

- Three linear post-processing algorithms that compute
m hierarchy of quasi-flat zones
m also known as the a-tree
m also known as the Fuzzy Connectedness hierarchy
m (hierarchies of) watershed cuts

m hierarchies by increasing attributes

m constrained connectivity hierarchies or
m watershed-based hierarchies.

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Outline

Binary Partition Tree and Minimum Spanning Tree

Post-Processing the binary tree
m Quasi-flat zones hierarchy
m Watershed-cut hierarchy
m Attribute-based hierarchies

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Outline

Binary Partition Tree and Minimum Spanning Tree

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Minimum Spanning Tree

The Minimum Spanning Tree (MST) T is a connected spanning
graph of the graph G such that the weight of T:

F(T):=) _ F(e)

ecE(T)

is the least possible weight for a connected spanning subgraph
of G.

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Kruskal algorithm for MST (High-Level View)

m create a forest F (a set of trees), where each vertex in the
graph is a separate tree

m create a set S containing all the edges in the graph

m while S is nonempty and F is not yet a single tree

m remove an edge with minimum weight from S

m if that edge connects two different trees, then add it to the
forest, combining two trees into a single tree

m otherwise discard that edge.

At the termination of the algorithm, the forest has only one
component and forms a minimum spanning tree of the graph.

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

The disjoint set problem

The disjoint set problem consists in maintaining a collection O of
disjoint sets under the operation of union.

Each set @ in Q is represented by a unique element of @, called
the canonical element.

m MakeSet(qgi)

m FindCanonical(q)

= Union(qi, g2)

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Kruskal algorithm for MST (Implementation)

Data: An edge-weighted graph (V, E, F).
Result: A minimum spanning tree MST
Result: A collection O

// Collection Q is initialized to ()
e:=0
for all x; € V do MakeSet(/);
for all edges {x,y} by (strict) increasing weight F({x,y}) do
¢x 1= Q.FindCanonical(x); ¢, := Q.FindCanonical(y)
if ¢« # ¢, then
Q.Union(cy, ¢);
L MSTle] == {x,y}; e:=e+1

8 else DoSomething({x, y})

~N o gk, WO =

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Main question in Kruskal implementation

How to represent and implement the collection Q.

Answer

A good representation for Q is as a set of trees.

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

Playing with Kruskal

L. Najman et al.

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

{a.e]
{c,d}

—v—g—¢—h

A7

0

T S

y
d

S €«----€«---

Second edge-node

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

{g,h}

~

&
D

——

— — — —

v {c,d} '
l [—— 0 —— l
v | v o v
e f+——9 —— h

G

8 <----

S

S «--—--—€«---
x
—_
k
Q «----
[\&)
oI w

Third edge-node

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

{g,h}

N
N

— — — —

{c,d}

S — — — —« — — —

L (——— - - - ——€ = =
Q <«-

-
G

()
8 <----

< - - - -

\[\D
oI w

Fourth edge-node

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

‘ .
| | |
S N
D% et a et eyl
¢A > /3 ¢/
a C ==
2 0 2 0 d

Fifth edge-node

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

P +
C T I
e 4
Y e 2 o 0
VARV ARV ARy A
SErE ara

Sixth edge-node

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

P +
Y |
: v o | v
e— :
i 1 "2 L
v/ 0 ;A /3 i/
a ——) c — d
9 2 0

No new node

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

P +
Y |
: v o | v
6— :
' 1 "2 L
v/ 0 ;A « /3 i/
a —— } c — d
9 2 0

Seventh edge-node

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

D €---—< - -

S €----<«---
(e

No new node

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

D €---—< - -

S €----<«---
(e

No new node

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

D €---—< - -

S €----<«---
(e

Final QBT

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Qg7 Union-Find

Procedure Qp7.MakeSet(q)
1 QBT.parent[q] = —1; Qpr.size += 1;

Function Qg7.FindCanonical(q)

1 while Qg7.parent[q/> 0 do q :=QpT.parent[q];
2 return g,

Function Qp7.Union(cy, c,)

1 Qpr.parent[cy]:=QpT .size; QpT.parent[c,|:=QpT size;
2 QpT-MakeSet(QpT.size);
3 return Qp7.size-1;

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Qg7 Union-Find

The produced tree is useful

The algorithm is slow : O(|V|?)

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Tarjan Union-Find

Quasi-linear complexity

The produced tree is not useful for our purpose

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Tarjan Union-Find

Procedure Q1.MakeSet(q)
1 Qt.parent[Qr.size] := —1; Q7.Rnk[Qt.size] :=0; Qr.size +=1;

Function Qt.FindCanonical(q)

1 r:=gq;

2 while Qt.parent[r] > 0 do r :=Q7.parent]r];

3 while Qt.parent[q] > 0 do tmp := q; q :=Q7.parent|q];
Qr.parent[tmp| ;= r;

Function Q7.Union(c, ¢y)

if (Q7.Rnklck] >Q7.Rnk[c,]) then swap(cy,cy);

if (Q7.Rnklcx] == Q7.Rnk|[c,]) then Qt.Rnk[c,] += 1;
Qr.parent[cy] := ¢y;

return c;

L. Najman et al. Playing with Kruskal

A W N =

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Qeg7: Efficient Qg1 Union-Find

m Combination of both Qg7 and Q7.
m Quasi-linear complexity.

m One of the produced trees, QgT, is useful.

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Qeg7: Efficient Qg1 Union-Find

Procedure Qgg1.MakeSet(q)
1 Qest.Root[q]:=q; Qsr.MakeSet(q); Qr.MakeSet(q);

Function Qeg7.Union(cy, ¢y)

tuZZQEBT.ROOt[CX]; t, ;= QEBT.ROOt[Cy];

Qa7 .parent[t,] := Qpr.parent[t,] := Qg7 .size;

Qa7 .children[QpT.size].add({t, });
Qs7.children[QpT.size].add({t, });

c:=Qr.Union(cx,c,); // Union in Q7 (with compression)
Qes7-Root[c] := Qpr.size; // Update the root of QesT

Qs7-MakeSet(Qg7 .size);
return Qgr.size-1;

0 N o g, W =

Function Qgg7.FindCanonical(q)

1 return Qr.FindCanonical(q);

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Outline

Post-Processing the binary tree

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Some helper functions

Function getEdge(n)

Data: a (non-leaf) node n of Qpt
Result: the edge e of the MST corresponding to the n" node
1 return n— |V

7

Function weightNode(n)

Data: a (non-leaf) node of the tree
Result: the weight of the MST edge associated with the n" node

of QBT
1 return F(MST[getEdge(n)]);

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Outline

Post-Processing the binary tree
m Quasi-flat zones hierarchy

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Qc7: Quasi-flat zones hierarchy

m Also know as the a-tree.
m Also know as the Fuzzy Connectedness hierarchy.

m A quasi-linear algorithm: min-tree of the MST

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree SUEEHIE PO .hler‘archy
Post-Processing the binary tree LRI G0 LRI
Attribute-based hierarchies

Qc7: Quasi-flat zones hierarchy

I
I
7 T !
| :
2 | ¥
[| l
| :\L :| I :
1 V: ‘I(I Yoo ¥
v e mpm—— f o =—
: 1 :2 :0
iA ARV TERY &
q ==) == ==]
2 2 0

BT Qct

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy

Procedure CanonizeQpT

Data: Qg7
Result: Qc7, a canonized version of Qg
for all nodes n of Qgt do Qct.parent[n]:=Qpt.parent[n]; Qcr.size+=1;
for each non-leaf and non-root node n of Qgt by decreasing order do
p := Qct.parent[n];
if (weightNode(p) == weightNode(n)) then
for all c € Qpr.children[n] do Qct.parent[c]:=p;
L Qct.parent[n]:=n; // Delete node n of Qcr

S 0 A WN =

// If needed, build the list of children
7 for all nodes n of Qc1 do
L p:=Qct.parent[n]; if p > 0 and p# n then Qcr.children[p].add(n);

=]

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy

QBT or QcT1?

m It is possible to merge the min-tree algorithm with Kruskal's
MST to obtain Q¢7 in one step

m (g7 contains more information than QcT

m The rest of the talk shows that computing Q¢ is not needed

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Outline

Post-Processing the binary tree

m Watershed-cut hierarchy

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Woatershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Watershed cuts

m Partitions defined thanks to the drop of water principle

m Difficulty: non-uniqueness on flat zones (hence a choice)

m Also leads to a hierarchy (of watershed-cut partitions)

m hierarchy by pass/connection value
m (also known as Fuzzy connectedness)

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Watershed cuts

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Watershed cuts

Function watershed

Data: Qgr

Result: A binary array ws indicating which MST edges are watershed
1 for all leaf-nodes n of Qgr do minima[n]:=0;

2 for each non-leaf node n of Qgt by increasing order do

3 flag := TRUE; nb := 0;

4 for all c € Qgr.children[n] do

5 m := minimalc|; nb := nb+ m;

6 L if (m == 0) then flag := FALSE;

ws[getEdge(n)] := flag;
if (nb # 0) then minima[n] := nb;

9 else

10 if (n is the root of Qg7) then minima[n] := 1;

11 else

12 p := Qpr.parent[n];

13 if (weightNode[n]<weightNode[p]) then minima[n] := 1;
14 else minima[n]:=0;

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Outline

Post-Processing the binary tree

m Attribute-based hierarchies

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Attribute-based hierarchies

m Increasing attributes

m Watershed-cut framework
m Constrained-connectivity framework
m The range criterion is indeed increasing

m Area-base, depth-based, volume-based hierarchies. ..

m either from a watershed-cut hierarchy
m or from a quasi-flat zone hierarchy

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Attribute-based hierarchies

n9(19,19) ’/lg:lg

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Attribute-based hierarchies

Function getAttribute(n)

Data: A node n of QgT
Result: The attribute at the time of the merging
1 if (n is the root) or (weightNode(parent[n]) # weightNode(n)) then

for all ¢ children of n do getAttribute(c);
3 | attribute[n] := attributeCompln];
4 else
5 max:=0;
6 for all children c of n do
7 v:=getAttribute(c);
8 if v > max then max := v;
9 | attribute[n] := max;

10 return attribute[n];

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Attribute-based hierarchies

Procedure ComputeMergeAttributeMST

Data: QsT1
Result: a reweighted MST G corresponding to the attribute-based
hierarchy

1 for any non-leaf node n of Qg1 do
2 a1 := attribute[children[n].left];
3 ap := attribute[children[n].right];
4 G|getEdge(n)] := min(a1, a2);

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Conclusion

m Several elegant yet efficient algorithms for morphological trees
m Based on the Minimum Spanning Tree

m Other approaches than Kruskal can be used

M

Unification theory in: Cousty, J., Najman, L., Perret, B.:
Constructive links between some morphological hierarchies on
edge-weighted graphs. (ISMM 2013).

m Source code at http://www.esiee.fr/~info/sm/

L. Najman et al. Playing with Kruskal

http://www.esiee.fr/~info/sm/

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Summary of the poster content

PH(G) MH(G) PH(T) MH(T) Q B~ Hs
PH(G) <= <= — — = X X
MH(G) < <= E o — X X
PH(T) <= <= <= <= e <= X
MH(T) <= <= <= <= E <= X
Q <= <= <= <~— <~ = X
B X X = = - < -
Hs X X X X X < <=

Table 1: Summary of the main results.

L. Najman et al. Playing with Kruskal

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Binary Partition Tree and Minimum Spanning Tree

Post-Processing the binary tree

Thank for
your
attention !

Mathematical
Morphology

Edited by
Laurent Najman and Hugues Talbot

y I == WWILEY

S —

Pink: http://pinkhqg.com
Olena: http://www.Irde.epita.fr/cgi-bin /twiki/view/Olena

L. Najman et al. Playing with Kruskal

	Binary Partition Tree and Minimum Spanning Tree
	Post-Processing the binary tree
	Quasi-flat zones hierarchy
	Watershed-cut hierarchy
	Attribute-based hierarchies

