
Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Playing with Kruskal:
algorithms for morphological trees

in edge-weighted graphs

Laurent Najman Jean Cousty Benjamin Perret

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, A3SI, ESIEE

Tuesday 28 may 2013

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Highlights

Results

- A quasi-linear algorithm that computes a binary partition tree by
altitude ordering

- Three linear post-processing algorithms that compute

hierarchy of quasi-flat zones

also known as the α-tree
also known as the Fuzzy Connectedness hierarchy

(hierarchies of) watershed cuts

hierarchies by increasing attributes

constrained connectivity hierarchies or
watershed-based hierarchies.

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree
Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree
Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Minimum Spanning Tree

The Minimum Spanning Tree (MST) T is a connected spanning
graph of the graph G such that the weight of T :

F (T) :=
∑

e∈E(T)

F (e)

is the least possible weight for a connected spanning subgraph
of G .

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Kruskal algorithm for MST (High-Level View)

create a forest F (a set of trees), where each vertex in the
graph is a separate tree

create a set S containing all the edges in the graph

while S is nonempty and F is not yet a single tree

remove an edge with minimum weight from S
if that edge connects two different trees, then add it to the
forest, combining two trees into a single tree
otherwise discard that edge.

At the termination of the algorithm, the forest has only one
component and forms a minimum spanning tree of the graph.

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

The disjoint set problem

The disjoint set problem consists in maintaining a collection Q of
disjoint sets under the operation of union.
Each set Q in Q is represented by a unique element of Q, called
the canonical element.

MakeSet(q1)

FindCanonical(q1)

Union(q1, q2)

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Kruskal algorithm for MST (Implementation)

Data: An edge-weighted graph (V ,E ,F).
Result: A minimum spanning tree MST
Result: A collection Q
// Collection Q is initialized to ∅

1 e := 0
2 for all xi ∈ V do MakeSet(i);
3 for all edges {x , y} by (strict) increasing weight F ({x , y}) do
4 cx := Q.FindCanonical(x); cy := Q.FindCanonical(y)
5 if cx 6= cy then
6 Q.Union(cx , cy);
7 MST[e] := {x , y}; e := e + 1

8 else DoSomething({x , y})

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Main question in Kruskal implementation

Question

How to represent and implement the collection Q.

Answer

A good representation for Q is as a set of trees.

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

Edge-weighted graph
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{c,d}

First edge-node
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{a,e}
{c,d}

Second edge-node
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{g,h}

{a,e}
{c,d}

Third edge-node
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{e,f} {g,h}

{a,e}
{c,d}

Fourth edge-node
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{d,h}

{e,f} {g,h}

{a,e}
{c,d}

Fifth edge-node
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{a,b}

{d,h}

{e,f} {g,h}

{a,e}
{c,d}

Sixth edge-node
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{a,b}

{d,h}

{e,f} {g,h}

{a,e}
{c,d}

No new node
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{b,c}
{a,b}

{d,h}

{e,f} {g,h}

{a,e}
{c,d}

Seventh edge-node
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{b,c}
{a,b}

{d,h}

{e,f} {g,h}

{a,e}
{c,d}

No new node
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{b,c}
{a,b}

{d,h}

{e,f} {g,h}

{a,e}
{c,d}

No new node
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{b,c}
{a,b}

{d,h}

{e,f} {g,h}

{a,e}
{c,d}

Final QBT
L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

QBT Union-Find

Procedure QBT .MakeSet(q)

1 QBT .parent[q] := −1; QBT .size += 1;

Function QBT .FindCanonical(q)

1 while QBT .parent[q]≥ 0 do q :=QBT .parent[q];
2 return q;

Function QBT .Union(cx , cy)

1 QBT .parent[cx]:=QBT .size; QBT .parent[cy]:=QBT .size;
2 QBT .MakeSet(QBT .size);
3 return QBT .size-1 ;

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

QBT Union-Find

Interest

The produced tree is useful

Drawback

The algorithm is slow : O(|V |2)

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Tarjan Union-Find

Interest

Quasi-linear complexity

Drawback

The produced tree is not useful for our purpose

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Tarjan Union-Find

Procedure QT .MakeSet(q)

1 QT .parent[QT .size] := −1; QT .Rnk[QT .size] := 0; QT .size += 1;

Function QT .FindCanonical(q)

1 r := q;
2 while QT .parent[r] ≥ 0 do r :=QT .parent[r];

3 while QT .parent[q] ≥ 0 do tmp := q; q :=QT .parent[q];

QT .parent[tmp] := r ;

Function QT .Union(cx , cy)

1 if (QT .Rnk[cx] >QT .Rnk[cy]) then swap(cx , cy);
2 if (QT .Rnk[cx] == QT .Rnk[cy]) then QT .Rnk[cy] += 1;
3 QT .parent[cx] := cy ;
4 return cy ;

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

QEBT : Efficient QBT Union-Find

Interest

Combination of both QBT and QT .

Quasi-linear complexity.

One of the produced trees, QBT , is useful.

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

QEBT : Efficient QBT Union-Find

Procedure QEBT .MakeSet(q)

1 QEBT .Root[q]:=q; QBT .MakeSet(q); QT .MakeSet(q);

Function QEBT .Union(cx , cy)

1 tu:=QEBT .Root[cx]; tv := QEBT .Root[cy];
2 QBT .parent[tu] := QBT .parent[tv] := QBT .size;
3 QBT .children[QBT .size].add({tu});
4 QBT .children[QBT .size].add({tv});
5 c:=QT .Union(cx ,cy); // Union in QT(with compression)

6 QEBT .Root[c] := QBT .size; // Update the root of QEBT

7 QBT .MakeSet(QBT .size);
8 return QBT .size-1 ;

Function QEBT .FindCanonical(q)

1 return QT .FindCanonical(q);

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree
Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Some helper functions

Function getEdge(n)

Data: a (non-leaf) node n of QBT

Result: the edge e of the MST corresponding to the nth node
1 return n − |V |;

Function weightNode(n)

Data: a (non-leaf) node of the tree
Result: the weight of the MST edge associated with the nth node

of QBT

1 return F(MST[getEdge(n)]);

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree
Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

QCT : Quasi-flat zones hierarchy

Also know as the α-tree.

Also know as the Fuzzy Connectedness hierarchy.

A quasi-linear algorithm: min-tree of the MST

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

QCT : Quasi-flat zones hierarchy

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{b,c}
{a,b}

{d,h}

{e,f} {g,h}

{a,e}
{c,d}

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

2

1

1 0

0

0

QBT QCT

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Quasi-flat zones hierarchy

Procedure CanonizeQBT

Data: QBT

Result: QCT , a canonized version of QBT

1 for all nodes n of QBT do QCT .parent[n]:=QBT .parent[n]; QCT .size+=1;
2 for each non-leaf and non-root node n of QBT by decreasing order do
3 p := QCT .parent[n];
4 if (weightNode(p) == weightNode(n)) then
5 for all c ∈ QBT .children[n] do QCT .parent[c]:=p;
6 QCT .parent[n]:=n; // Delete node n of QCT

// If needed, build the list of children

7 for all nodes n of QCT do
8 p:=QCT .parent[n]; if p ≥ 0 and p 6= n then QCT .children[p].add(n);

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Quasi-flat zones hierarchy

QBT or QCT ?

It is possible to merge the min-tree algorithm with Kruskal’s
MST to obtain QCT in one step

QBT contains more information than QCT

The rest of the talk shows that computing QCT is not needed

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree
Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Watershed cuts

Partitions defined thanks to the drop of water principle

Difficulty: non-uniqueness on flat zones (hence a choice)

Also leads to a hierarchy (of watershed-cut partitions)

hierarchy by pass/connection value
(also known as Fuzzy connectedness)

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Watershed cuts

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

(3,2)
{b,c}(1,1)

{a,b}

(2,2)
{d,h}

(1,1)
{e,f}

(0,1)
{g,h}

(0,1)
{a,e}

(0,1)
{c,d}

M3

M1

M2

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Watershed cuts

Function watershed
Data: QBT

Result: A binary array ws indicating which MST edges are watershed
1 for all leaf-nodes n of QBT do minima[n]:=0;
2 for each non-leaf node n of QBT by increasing order do
3 flag := TRUE; nb := 0;
4 for all c ∈ QBT .children[n] do
5 m := minima[c]; nb := nb + m;
6 if (m == 0) then flag := FALSE;

7 ws[getEdge(n)] := flag;
8 if (nb 6= 0) then minima[n] := nb;
9 else

10 if (n is the root of QBT) then minima[n] := 1;
11 else
12 p := QBT .parent[n];
13 if (weightNode[n]<weightNode[p]) then minima[n] := 1;
14 else minima[n]:=0;

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Outline

1 Binary Partition Tree and Minimum Spanning Tree

2 Post-Processing the binary tree
Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Attribute-based hierarchies

Increasing attributes

Watershed-cut framework

Constrained-connectivity framework

The range criterion is indeed increasing

Area-base, depth-based, volume-based hierarchies. . .

either from a watershed-cut hierarchy
or from a quasi-flat zone hierarchy

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Attribute-based hierarchies

0

1

0

1

0

2

0

2

0

n1:2 n2:3 n3:6

n4:5 n5:3

n6:(5,3)

n7:(11,11)

n8:(16,11)

n9:(19,19)

0

1

0

1

0

2

0

2

0

n1:2 n2:3 n3:6

n4:5 n5:3

n7:11

n9:19

QBT QCT

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Attribute-based hierarchies

Function getAttribute(n)

Data: A node n of QBT

Result: The attribute at the time of the merging
1 if (n is the root) or (weightNode(parent[n]) 6= weightNode(n)) then
2 for all c children of n do getAttribute(c);
3 attribute[n] := attributeComp[n];

4 else
5 max:=0;
6 for all children c of n do
7 v:=getAttribute(c);
8 if v > max then max := v;

9 attribute[n] := max;

10 return attribute[n];

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Attribute-based hierarchies

Procedure ComputeMergeAttributeMST

Data: QBT

Result: a reweighted MST G corresponding to the attribute-based
hierarchy

1 for any non-leaf node n of QBT do
2 a1 := attribute[children[n].left];
3 a2 := attribute[children[n].right];
4 G [getEdge(n)] := min(a1, a2);

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Conclusion

Several elegant yet efficient algorithms for morphological trees

Based on the Minimum Spanning Tree

Other approaches than Kruskal can be used

Unification theory in: Cousty, J., Najman, L., Perret, B.:
Constructive links between some morphological hierarchies on
edge-weighted graphs. (ISMM 2013).

Source code at http://www.esiee.fr/~info/sm/

L. Najman et al. Playing with Kruskal

http://www.esiee.fr/~info/sm/

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Summary of the poster content

PH(G) MH(G) PH(T) MH(T) Q B≺ HS
PH(G) ⇐⇒ ⇐⇒ =⇒ =⇒ =⇒ × ×
MH(G) ⇐⇒ ⇐⇒ =⇒ =⇒ =⇒ × ×
PH(T) ⇐= ⇐= ⇐⇒ ⇐⇒ =⇒ ⇐= ×
MH(T) ⇐= ⇐= ⇐⇒ ⇐⇒ =⇒ ⇐= ×
Q ⇐= ⇐= ⇐= ⇐= ⇐⇒ =⇒ ×
B≺ × × =⇒ =⇒ =⇒ ⇐⇒ =⇒
HS × × × × × ⇐= ⇐⇒

Table 1: Summary of the main results.

L. Najman et al. Playing with Kruskal

Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Quasi-flat zones hierarchy
Watershed-cut hierarchy
Attribute-based hierarchies

Thank for
your

attention !

Pink: http://pinkhq.com
Olena: http://www.lrde.epita.fr/cgi-bin/twiki/view/Olena

L. Najman et al. Playing with Kruskal

	Binary Partition Tree and Minimum Spanning Tree
	Post-Processing the binary tree
	Quasi-flat zones hierarchy
	Watershed-cut hierarchy
	Attribute-based hierarchies

