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Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, A3SI, ESIEE

Tuesday 28 may 2013

L. Najman et al. Playing with Kruskal



Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Highlights

Results

- A quasi-linear algorithm that computes a binary partition tree by
altitude ordering

- Three linear post-processing algorithms that compute

hierarchy of quasi-flat zones

also known as the α-tree
also known as the Fuzzy Connectedness hierarchy

(hierarchies of) watershed cuts

hierarchies by increasing attributes

constrained connectivity hierarchies or
watershed-based hierarchies.
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Minimum Spanning Tree

The Minimum Spanning Tree (MST) T is a connected spanning
graph of the graph G such that the weight of T :

F (T ) :=
∑

e∈E(T )

F (e)

is the least possible weight for a connected spanning subgraph
of G .
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Kruskal algorithm for MST (High-Level View)

create a forest F (a set of trees), where each vertex in the
graph is a separate tree

create a set S containing all the edges in the graph

while S is nonempty and F is not yet a single tree

remove an edge with minimum weight from S
if that edge connects two different trees, then add it to the
forest, combining two trees into a single tree
otherwise discard that edge.

At the termination of the algorithm, the forest has only one
component and forms a minimum spanning tree of the graph.
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The disjoint set problem

The disjoint set problem consists in maintaining a collection Q of
disjoint sets under the operation of union.
Each set Q in Q is represented by a unique element of Q, called
the canonical element.

MakeSet(q1)

FindCanonical(q1)

Union(q1, q2)
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Kruskal algorithm for MST (Implementation)

Data: An edge-weighted graph (V ,E ,F ).
Result: A minimum spanning tree MST
Result: A collection Q
// Collection Q is initialized to ∅

1 e := 0
2 for all xi ∈ V do MakeSet(i);
3 for all edges {x , y} by (strict) increasing weight F ({x , y}) do
4 cx := Q.FindCanonical(x); cy := Q.FindCanonical(y)
5 if cx 6= cy then
6 Q.Union(cx , cy );
7 MST[e] := {x , y}; e := e + 1

8 else DoSomething({x , y})
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Main question in Kruskal implementation

Question

How to represent and implement the collection Q.

Answer

A good representation for Q is as a set of trees.
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Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

Edge-weighted graph
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Binary Partition Tree by altitude ordering
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e f g h

2 2 0

1 2 0

0 2 3 1

{c,d}

First edge-node
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Binary Partition Tree by altitude ordering
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Binary Partition Tree by altitude ordering
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Binary Partition Tree by altitude ordering

a b c d

e f g h

2 2 0

1 2 0

0 2 3 1

{e,f} {g,h}

{a,e}
{c,d}

Fourth edge-node
L. Najman et al. Playing with Kruskal



Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

Binary Partition Tree by altitude ordering
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Binary Partition Tree by altitude ordering
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Binary Partition Tree by altitude ordering
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Binary Partition Tree by altitude ordering
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Binary Partition Tree by altitude ordering
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Binary Partition Tree by altitude ordering
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Binary Partition Tree by altitude ordering
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QBT Union-Find

Procedure QBT .MakeSet(q)

1 QBT .parent[q] := −1; QBT .size += 1;

Function QBT .FindCanonical(q)

1 while QBT .parent[q]≥ 0 do q :=QBT .parent[q];
2 return q;

Function QBT .Union(cx , cy )

1 QBT .parent[cx ]:=QBT .size; QBT .parent[cy ]:=QBT .size;
2 QBT .MakeSet(QBT .size);
3 return QBT .size-1 ;
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QBT Union-Find

Interest

The produced tree is useful

Drawback

The algorithm is slow : O(|V |2)
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Tarjan Union-Find

Interest

Quasi-linear complexity

Drawback

The produced tree is not useful for our purpose
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Tarjan Union-Find

Procedure QT .MakeSet(q)

1 QT .parent[QT .size] := −1; QT .Rnk[QT .size] := 0; QT .size += 1;

Function QT .FindCanonical(q)

1 r := q;
2 while QT .parent[r ] ≥ 0 do r :=QT .parent[r ];

3 while QT .parent[q] ≥ 0 do tmp := q; q :=QT .parent[q];

QT .parent[tmp] := r ;

Function QT .Union(cx , cy )

1 if (QT .Rnk[cx ] >QT .Rnk[cy ]) then swap(cx , cy );
2 if (QT .Rnk[cx ] == QT .Rnk[cy ]) then QT .Rnk[cy ] += 1;
3 QT .parent[cx ] := cy ;
4 return cy ;
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QEBT : Efficient QBT Union-Find

Interest

Combination of both QBT and QT .

Quasi-linear complexity.

One of the produced trees, QBT , is useful.

L. Najman et al. Playing with Kruskal



Binary Partition Tree and Minimum Spanning Tree
Post-Processing the binary tree

QEBT : Efficient QBT Union-Find

Procedure QEBT .MakeSet(q)

1 QEBT .Root[q]:=q; QBT .MakeSet(q); QT .MakeSet(q);

Function QEBT .Union(cx , cy )

1 tu:=QEBT .Root[cx ]; tv := QEBT .Root[cy ];
2 QBT .parent[tu] := QBT .parent[tv ] := QBT .size;
3 QBT .children[QBT .size].add({tu});
4 QBT .children[QBT .size].add({tv});
5 c:=QT .Union(cx ,cy ); // Union in QT(with compression)

6 QEBT .Root[c] := QBT .size; // Update the root of QEBT

7 QBT .MakeSet(QBT .size);
8 return QBT .size-1 ;

Function QEBT .FindCanonical(q)

1 return QT .FindCanonical(q);
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Some helper functions

Function getEdge(n)

Data: a (non-leaf) node n of QBT

Result: the edge e of the MST corresponding to the nth node
1 return n − |V |;

Function weightNode(n)

Data: a (non-leaf) node of the tree
Result: the weight of the MST edge associated with the nth node

of QBT

1 return F(MST[getEdge(n)]);
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QCT : Quasi-flat zones hierarchy

Also know as the α-tree.

Also know as the Fuzzy Connectedness hierarchy.

A quasi-linear algorithm: min-tree of the MST
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QCT : Quasi-flat zones hierarchy
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Quasi-flat zones hierarchy

Procedure CanonizeQBT

Data: QBT

Result: QCT , a canonized version of QBT

1 for all nodes n of QBT do QCT .parent[n]:=QBT .parent[n]; QCT .size+=1;
2 for each non-leaf and non-root node n of QBT by decreasing order do
3 p := QCT .parent[n];
4 if (weightNode(p) == weightNode(n)) then
5 for all c ∈ QBT .children[n] do QCT .parent[c]:=p;
6 QCT .parent[n]:=n; // Delete node n of QCT

// If needed, build the list of children

7 for all nodes n of QCT do
8 p:=QCT .parent[n]; if p ≥ 0 and p 6= n then QCT .children[p].add(n);
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Quasi-flat zones hierarchy

QBT or QCT ?

It is possible to merge the min-tree algorithm with Kruskal’s
MST to obtain QCT in one step

QBT contains more information than QCT

The rest of the talk shows that computing QCT is not needed
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Watershed cuts

Partitions defined thanks to the drop of water principle

Difficulty: non-uniqueness on flat zones (hence a choice)

Also leads to a hierarchy (of watershed-cut partitions)

hierarchy by pass/connection value
(also known as Fuzzy connectedness)
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Watershed cuts
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Watershed cuts

Function watershed
Data: QBT

Result: A binary array ws indicating which MST edges are watershed
1 for all leaf-nodes n of QBT do minima[n]:=0;
2 for each non-leaf node n of QBT by increasing order do
3 flag := TRUE; nb := 0;
4 for all c ∈ QBT .children[n] do
5 m := minima[c]; nb := nb + m;
6 if (m == 0) then flag := FALSE;

7 ws[getEdge(n)] := flag;
8 if (nb 6= 0) then minima[n] := nb;
9 else

10 if (n is the root of QBT ) then minima[n] := 1;
11 else
12 p := QBT .parent[n];
13 if (weightNode[n]<weightNode[p]) then minima[n] := 1;
14 else minima[n]:=0;
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Attribute-based hierarchies

Increasing attributes

Watershed-cut framework

Constrained-connectivity framework

The range criterion is indeed increasing

Area-base, depth-based, volume-based hierarchies. . .

either from a watershed-cut hierarchy
or from a quasi-flat zone hierarchy
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Attribute-based hierarchies
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Attribute-based hierarchies

Function getAttribute(n)

Data: A node n of QBT

Result: The attribute at the time of the merging
1 if (n is the root) or (weightNode(parent[n]) 6= weightNode(n)) then
2 for all c children of n do getAttribute(c);
3 attribute[n] := attributeComp[n];

4 else
5 max:=0;
6 for all children c of n do
7 v:=getAttribute(c);
8 if v > max then max := v;

9 attribute[n] := max;

10 return attribute[n];
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Attribute-based hierarchies

Procedure ComputeMergeAttributeMST

Data: QBT

Result: a reweighted MST G corresponding to the attribute-based
hierarchy

1 for any non-leaf node n of QBT do
2 a1 := attribute[children[n].left];
3 a2 := attribute[children[n].right];
4 G [getEdge(n)] := min(a1, a2);
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Conclusion

Several elegant yet efficient algorithms for morphological trees

Based on the Minimum Spanning Tree

Other approaches than Kruskal can be used

Unification theory in: Cousty, J., Najman, L., Perret, B.:
Constructive links between some morphological hierarchies on
edge-weighted graphs. (ISMM 2013).

Source code at http://www.esiee.fr/~info/sm/
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Summary of the poster content

PH(G) MH(G) PH(T ) MH(T ) Q B≺ HS
PH(G) ⇐⇒ ⇐⇒ =⇒ =⇒ =⇒ × ×
MH(G) ⇐⇒ ⇐⇒ =⇒ =⇒ =⇒ × ×
PH(T ) ⇐= ⇐= ⇐⇒ ⇐⇒ =⇒ ⇐= ×
MH(T ) ⇐= ⇐= ⇐⇒ ⇐⇒ =⇒ ⇐= ×
Q ⇐= ⇐= ⇐= ⇐= ⇐⇒ =⇒ ×
B≺ × × =⇒ =⇒ =⇒ ⇐⇒ =⇒
HS × × × × × ⇐= ⇐⇒

Table 1: Summary of the main results.
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Thank for
your

attention !

Pink: http://pinkhq.com
Olena: http://www.lrde.epita.fr/cgi-bin/twiki/view/Olena
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