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Motivation

Input image. Result.

Question

How to obtain such a result?
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Shape-spaces and connected filtering

Image representations

Decomposition into primitive or fundamental elements that can be
more easily interpreted:

Functional decompositions;

Multiresolution decompositions;

Multi-scale representations;

Threshold decompositions;

Hierarchical representations.

Amplitude Phase

Not mutually exclusive.
Properties inherited from those of underlying operations.
Choice driven by the application needs.
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Shape-spaces and connected filtering

Connected operators

What’s connected operators ?

Filtering tools that merge flat zones.

Properties

No new contours,

Keep contours’ position.

An example : Levelings

Lower-leveling: for x and y neighbors,
g(x) > g(y)⇒ g(y) ≥ f (y).
Upper-leveling: for x and y neighbors,
g(x) > g(y)⇒ g(x) ≤ f (x).
Leveling: Lower-leveling ∩ Upper-leveling.

Leveling with marker.
f : input,

h : marker,
g : result.
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Shape-spaces and connected filtering

One popular implementation [Salembier & Wilkinson, SPM, 2009]
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Shape-spaces and connected filtering

Level sets and components
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Shape-spaces and connected filtering
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Shape-spaces and connected filtering

Level sets and components
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Shape-spaces and connected filtering

Level sets and components
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Shape-spaces and connected filtering

(Max) component tree
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Shape-spaces and connected filtering

(Max) component tree
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Shape-spaces and connected filtering

(Max) component tree
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Shape-spaces and connected filtering

(Max) component tree
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Shape-spaces and connected filtering

(Max) component tree

0

1

2

3

4

5

6

x

F (x)

A=2

B=3 C=2

D=4 E=3

F=8

G=8

H=10

L. Najman: Shape Spaces 9/66



Shape-spaces and connected filtering

(Max) component tree
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Components + inclusion relationship = component tree.
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Shape-spaces and connected filtering

Some of the many possible trees

Binary Partition Tree
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Shape-spaces and connected filtering

Some link with Morse’s Theory

Important idea

Some nodes are more important than others

Leaves ⇔ “Extrema”

Nodes with more than one child ⇔ “Saddle points”

Hence, filtering is linked with topological persistence
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Shape-spaces and connected filtering

Shape spaces: what are they?

A family of shapes (first part of the talk)

One can process each shape individually (keep/remove/highlight)
with any criterion, attribute, energy . . . => NOT ROBUST

With a tree structure (first part of the talk)

A first “topology” on the family of shapes
Increasing criterion

With a graph structure (second part of the talk)

A more complete structure on the family of shapes
Generalization of the previous approaches
With any criterion, attribute, energy . . . => ROBUST
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Shape-spaces and connected filtering

Attributes
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Shape-spaces and connected filtering

Attributes
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Shape-spaces and connected filtering

Attributes
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Shape-spaces and connected filtering

Attributes
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Shape-spaces and connected filtering

Attributes
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Shape-spaces and connected filtering

Attributes

Increasing attributes

Increasing attributes : A ⊆ B ⇒ A(A) ≤ A(B).
Examples : Area, height, volume.

Non-increasing attributes

Shape attributes.

I/A2 minimum for a round object,

Circularity : area/(π × l2
max ),

Elongation : Lmax/Lmin.

Lmin and Lmax : Length of the two main axes of the best fitting ellipse.
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Shape-spaces and connected filtering

Filtering with increasing attributes
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Shape-spaces and connected filtering

Filtering with increasing attributes
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Shape-spaces and connected filtering

Filtering with increasing attributes
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Shape-spaces and connected filtering

Applications: filtering with increasing attribute

The 9+2 microtubule doublets of a motile cilia
Attribute: Volume
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Shape-spaces and connected filtering

Applications: filtering with increasing attribute

of the system to the height criteria, we propose to analyse this parameter in a separate
paragraph (section 2.2.2). Because we are mainly interested in small fishing boats the
threshold for the area-filtering criteria is set to 20. In other words, all components in the
image that have an area of 20 pixels (¼100 m) or less are removed by the transform;
the remaining components are preserved in their entirety. Finally the resulting image
(outarea) is subtracted from the previous one (outheight) allowing to mark only those
pixels that correspond to potential ship targets (figure 4). Several tests undertaken with
4-connected and 8-connected components showed that the results were not very sensi-
tive to this parameter. Therefore, for both the height- and the area-filtering criteria,
we use 8-connected components for the connectivity parameter.

Determining the threshold value (th) for the height-filtering criteria is critical in our
application. Small modifications of the height criterion threshold involve drastic
changes on the output and similar images may produce quite different results.
Therefore, we have developed an adaptive threshold module that allows an automatic

h a

Height Area

Figure 3. Illustration of the height- and area-filtering criteria of a component (Najman and
Couprie (2006), with permission).

Filtered image (outheight) with a height criteria 

Detected ship target (outarea – outheight) Filtered image (outarea) with an area criteria

Initial image segment

Lat: 5° 0' 19" N
Long: 52° 6' 2" W

0 400 m

Figure 4. Illustration of the filtering strategy applied on image segment. For illustration
purposes, the cloud masking was not applied prior to image filtering, allowing a better visualiza-
tion of the results. The circle highlights the ship target to be extracted in the prescreening phase.

Spatial information retrieval 5843

Ship detection on optical satellite image
C. Corbane et al., International Journal of Remote Sensing 31 (22), 5837-5854
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Shape-spaces and connected filtering

Applications: filtering with increasing attribute

Box detection on a document image
Attribute: (width, height) of the component
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Shape-spaces and connected filtering

Applications: filtering with increasing attribute

Line detection on a document image
Attribute: (width, height) of the component

Operator: top-hat

L. Najman: Shape Spaces 16/66



Shape-spaces and connected filtering

Applications: filtering with increasing attribute

Letter detection on a document image
Attribute: area of the component

Operator: top-hat
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Shape-spaces and connected filtering

Some functions and spaces on which to compute the trees

An image

A gradient

Especially usefull with the watershed

A node-weighted graph

An edge-weighted graph

A weighted mesh

A density function

Topological mean-shift filtering

and more in the sequel
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Shape-spaces and connected filtering

Hierarchies: floodings and watersheds

Important idea

There exists numerous criterions for flooding a surface.

Flooding can be done through the min-(component-)tree.

Among those criterions, notably: depth, surface, volume.

[Beucher, ISMM, 1994 - Najman & Schmitt, PAMI, 1996 - Meyer et al., An. Telecom, 1997]
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Shape-spaces and connected filtering

Flooding and the min-tree

(a) Component tree

h

(b) Height

a

(c) Area

v

(d) Volume (e) Area filtering

Figure 8: Illustration of respectively a component tree (dashed lines), the height, the area
and the volume of a component and an area filtering.

computed these features for each 3D surface region of the model instead of
computing them on the global model. Finally, the set of descriptors available
for each region is as follows: (i) EGI, (ii) CEGI, (iii) Cord1D and Cord2D,
(iv) 2D curvature histograms. EGI and Cord2D features, which are com-
puted in reference to the center of the model, allow to take into account not
only the 3D shape of a region but also its position relatively to the model.

3.3. Surface region bags

We again use our search engine RETIN to perform the classification of
the objects after segmentation into regions. We use local features computed
on regions for the object representation. An object is thus summarized by a
set or “bag” of vectors describing the regions. The SVM classifier can then
be applied through specific kernels.

After the region feature computation, each object i is represented by a
bag Bi = {bri}r of region descriptors bri. bri represents one of the feature
histograms. As the input space is constituted of bags (that is to say of sets
of unordered vectors) of variable size, these bags must be mapped into a
Hilbert space in order to use a linear classifier such as SVM. This can be
achieved thanks to a kernel function. Several kernel functions have been
recently proposed, for example in [40] and modified in [41] by:

K(Bi, Bj) =


 �

bri∈Bi

�

bsj∈Bj

(k (bri, bsj))
q




1
q
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Shape-spaces and connected filtering

An example of mesh segmentation

In recent papers [44], we investigate watersheds in a framework different
from the one of vertex-weighted graphs: we consider a graph whose edges
are weighted by a cost function. A watershed of a topographic surface may
be thought of as a separating line-set on which a drop of water can flow
down toward several minima. Following this intuitive idea, we introduce the
definition of watershed cuts in edge-weighted graphs [44]. We establish the
consistency (with respect to characterizations of the catchment basins and
dividing lines) of watershed cuts, prove their optimality (in terms of minimum
spanning forests) and propose efficient linear algorithms to compute them. As
far as we know, the framework of edge-weighted graphs is the only generic
discrete framework in which all these properties hold true. In particular,
it is the first framework in which the drop of water principle is used as a
definition for watershed and in which this principle leads to fast algorithms
and an optimality theorem.

Watershed cuts can be extended [37] to simplicial complexes, and espe-
cially meshes. Consider a 3D surface mesh M (composed of triangles, sides of
the triangles and points) so that for any side e in M there is exactly one pair
of triangles (g, h) such that e ∈ g and e ∈ h. We build a graph G = (V, E)
with one vertex for each face of M and an edge connecting two vertices if the
corresponding two faces share a side (fig. 7.b).

Figure 7: (a) A triangle mesh. (b) Segmentation on edges of the graph (in bold). (c)
Segmentation on the mesh.

To compute a watershed cut, we need a map on the edges. Let e be any
side of a triangle in M and (x, y) the pair of points such that e = {x, y}. As
described in section 3.1.1, we have computed the curvature values in each
point of the mesh. We denote them as κ1x, κ2x and κ1y, κ2y for the points x
and y respectively. Then we compute for each e in M , the mean of κ1 and
κ2 at x and y: κ1 = (κ1x + κ1y)/2 and κ2 = (κ2x + κ2y)/2. Considering then
the scalar curvature functions explained in section 3.1.1, we then obtain a
map from E into R that we denote by f , and that represents the curvature
between each two adjacent faces of the mesh. With such a map, we can

14
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Shape-spaces and connected filtering

An example of mesh segmentation

function has the behavior of the inverse of the mean curvature but takes
always positive values. It gives high values to concave zones and low values
to convex zones. We also consider a max curvature as M = max(κ2

1, κ
2
2), that

gives high values on convex and concave zones. The max curvature has also
high values on zones that are flat in one direction, and convex or concave
in the other. These zones are commonly the edges that divide planes of an
object, as the division between the roof and the doors of a car.

We have used this different treatments of the principal curvatures and,
for the art objects we deal with, the Hinv function is the one with which we
obtained the best results, while the max curvature M gives better results for
manufactured objects.

(a) (b) (c)

Figure 6: Curvature scalar functions: (a) 3D object; (b) max curvature; (c) pseudo-inverse
curvature.

Fig. 6(b) and 6(c) illustrate these two scalar functions for the sculp-
ture 6(a). Small values are black, while large values are white.

3.1.2. Watershed cuts on curvature meshes

Many approaches [35, 36] have been proposed to define and/or compute
the watershed of a vertex-weighted graph corresponding to a grayscale image.
The digital image is seen as a topographic surface: the gray level of a pixel
becomes the elevation of a point, the basins and valleys of the topographic
surface correspond to dark areas, whereas the mountains and crest lines
correspond to light areas.

13
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Shape-spaces and connected filtering

An example of mesh segmentationMathematical morphology on edge-weighted graphs 17

(a) (b)

(c)

(d) (e) ( f )

Figure 1.7: Surface segmentation by watershed cut. (a): A mesh in black and its associated graph in gray.

(b): A cut on this graph (in bold); and (c), the corresponding segmentation of the mesh. (d): Rendering of

the mesh of a sculpture. (e): A watershed (in red) of a map F which behaves like the inverse of the mean

curvature and, in ( f ), a watershed of a filtered version of F . The mesh shown in (d) is provided by the

French Museum Center for Research.

secondly we apply the watershed cuts to the segmentation of diffusion tensors images, which are medical

images associating a tensor to each voxel.

3D shape acquisition and digitizing have received more and more attention for a decade, leading to an

increasing amount of 3D surface-models (or meshes) such as the one in Fig. 1.7d. In a recent work [50], a

new search engine has been proposed for indexing and retrieving objects of interests in a database of meshes

(EROS 3D) provided by the French Museum Center for Research. One key idea of this search engine is to

use region descriptors rather than global shape descriptors. In order to produce such descriptors, it is then

essential to obtain meaningful mesh segmentations.

Informally, a mesh M in the 3D Euclidean space is a set of triangles, sides of triangles and points such

that each side is included in exactly two triangles (see Fig. 1.7a). In order to perform a watershed cut on

such a mesh, we build a graph G = (V,E) whose vertex set V is the set of all triangles in M and whose edge

set E is composed by the pairs ei j = {vi,v j} such that vi and v j are two triangles of M that share a common

side (see Fig. 1.7a). The graph G is known under the name of 2-dual of the surface mesh [51].

To obtain a segmentation of the mesh M thanks to a watershed cut, we need to weight the edges of G (or

equivalently the sides of M) by a map whose values are high around the boundaries of the regions that we

want to separate. We have found that the interesting contours on the EROS 3D meshes are mostly located

on concave zones. Therefore, we weight the edges of G by a weighting w which behaves like the inverse

S. Philipp-Foliguet et al., Pat. Rec., 2011, 44 (3), pp. 588-597
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Shape-spaces and connected filtering

An example of mesh segmentation

(a) (b) (c)

(d) (e) (f) (g)

Figure 9: Segmentation of (a) an artificial object (chess piece); (b)–(c) two industrial
pieces; (d) a model of the Princeton shape benchmark; (e)–(g) three Mother-Divinities of
the EROS-3D database.

18
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Shape-spaces and connected filtering

A topological mean-shift algorithm [Paris-Durand CVPR 2007]
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Shape-spaces and connected filtering

Filtering with increasing attributes

Pruning the trees

A ↑, Pruning the leaves = Attribute thresholding.

Non-increasing attributes

How to process the filtering?
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Shape-spaces and connected filtering

Filtering with non-increasing attributes [Salembier & Wilkinson, SPM, 2009]

Pruning strategies

Min,

Max,

Viterbi.

Remove the sub-tree rooted in the node.

Attribute thresholding strategies

Direct,

Subtractive.

Remove the nodes under the threshold.
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Shape-spaces and connected filtering

Our proposed framework
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Shape-spaces and connected filtering

Our proposed framework [Xu & Géraud & Najman, ICPR, 2012]
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Shape-based morphology

Outline

1 Shape-spaces and connected filtering

2 Shape-based morphology

3 Some illustrations and applications

4 Conclusion and perspectives
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Shape-based morphology

Construction of second tree representation

A=10 B=11 C=6 D=8 E=12

F=5 G=4

H=7

I=9
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Shape-based morphology

Construction of second tree representation

A=10 B=11 C=6 D=8 E=12

F=5 G=4

H=7

I=9

Level {x |A(x) ≤ 8}.

L. Najman: Shape Spaces 27/66



Shape-based morphology

Min-tree of a tree-based image representation

G=4

F=5C=6

H=7 D=8 I=9 A=10 B=11 E=12

Important idea

Computing a Min-Tree on a node-weighted graph instead of a matrix
image.
Easy thanks to Olena [Levillain & Géraud & Najman, ICIP, 2010], the generic image
processing platform http: // olena. lrde. epita. fr .
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Shape-based morphology

Morphological shapings
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Shape-based morphology

Morphological shapings

Input image. Shaping based on A

Low threshold of A. Higher threshold of A.
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Shape-based morphology

Morphological shapings

Input image. Our shaping 2.

Using a combination of attributes A.
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Shape-based morphology

Encompassing classical attribute filtering strategies

Increasing attribute A
T T = T .
No need to check if the attribute is increasing or not.

Attribute thresholding for non-increasing A
AA = A,
AA is the current level of T T .
Pruning T T = Attribute thresholding.
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Shape-based morphology

Shape-based lower/upper-levelings

Shape-based lower-levelings

T : Max-tree,
∀x ∈ E , ψs(f )(x) ≤ f (x) always holds ⇒ ψs(f ) is a lower-leveling of f .
⇒ Shape-based lower-levelings.

Shape-based upper-levelings

T : Min-tree,
∀x ∈ E , ψs(f )(x) ≥ f (x) always holds ⇒ ψs(f ) is a upper-leveling of f .
⇒ Shape-based upper-levelings.
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Shape-based morphology

Morphological shapings

Morphological shapings

T : Tree of shapes,
The order between ψs(f ) and f no more guaranteed, not levelings, but
it is self-dual.
⇒ Self-dual morphological shapings.
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Shape-based morphology

Extinction-based filtering strategy

A

B
C

Given a strict order for the set of minima : A ≺ C ≺ B.
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Shape-based morphology

Extinction-based filtering strategy

A

B
C

hB

B merges with C .
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Shape-based morphology

Extinction-based filtering strategy

A

B
C

hC

C merges with A.
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Shape-based morphology

Extinction-based filtering strategy

Strategy

Preserve the blobs of minima whose
extinction value > a given value.

Advantage

Only the connected components
being meaningful enough compared
with their context are preserved.

A

B
C

hC

hB

hA

Extinction value of three minima.
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Shape-based morphology

Application to object segmentation

Context-based estimator for object detection

[Xu & Géraud & Najman, ICIP, 2012]

E (u, ∂τ) = Eint(u, ∂τ) + Eext(u, ∂τ) + Econ(u, ∂τ).

V (u,R) =
∑

p∈R

(
u(p)− u(R)

)2
,

Eext(u, ∂τ) =
V
(
u, Rεin(∂τ)

)
+ V

(
u, Rεout(∂τ)

)

V
(
u, Rεin(∂τ) ∪Rεout(∂τ)

) ,

Eint(u, ∂τ) =
∑

e∈∂τ
|curv(u)(e)| / L(∂τ),

,
Econ(u, ∂τ) = 1 / L(∂τ).
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Shape-based morphology

Application to object segmentation
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Object detection principle

Significant minima ⇔ Objects.
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Shape-based morphology

Application to object segmentation

Object detection strategy

Morphological closing in the shape-space: Get rid of the spurious
minima.
Any attribute A can be used.
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Shape-based morphology

Object detection results

Context-based energy estimator

Input image. Objects detected.
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Shape-based morphology

Object detection results

Shape attribute

Objects detected using shape attribute.
Red ones : circularity-based; Green ones : Inverse elongation-based.
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Shape-based morphology

Saliency map

Stacking the contours gives a saliency map [Najman & Schmitt, PAMI, 1996]

(a) Original image. (b) Some contours.
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Shape-based morphology

Saliency map

Stacking the contours gives a saliency map [Najman & Schmitt, PAMI, 1996]

(a) Original image. (b) A saliency map.
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Shape-based morphology

Different representations

[L. Najman - JMIV - 2011] Mathematical definitions, equivalence between
ultrametric watersheds, saliency maps and trees of segmentations

(a) Original image. (b) Ultrametric watershed.

(c) One of the segmentations. (d) Dendrogram.
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Shape-based morphology

Saliency maps can be computed on a mesh

(a) (b): zoom on a part of (a)

Fig. 3. Illustration of saliencies of watershed cuts on a mesh provided by the French
Museum Center for Research and Restoration (C2RMF, Le Louvre, Paris).

7 Conclusion and perspective

In this paper, a classical morphological scheme for building hierarchical
segmentation is formalized. This formalism leads us to establish strong properties
linking hierarchical segmentations and combinatorial optimality in terms of
minimum spanning forests of the original image. Recent work of Couprie et
al. [22] link some schemes based on minimum spanning forests to global energy
minimization. Hence, a promising perspective is the investigation of hierarchical
schemes defined through energy minimization such as the one presented in [5].

The source code of the algorithms presented in this paper is available at:
http://www.esiee.fr/~info/sm
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Shape-based morphology

Saliency maps from shape-based filterings

Idea

Extinction value for minima ⇔ Persistence of objects
W⇒ Saliency maps.

Strategy

W : Weight the object contour with the maximum persistence of
object that the contour belongs to.

L. Najman: Shape Spaces 46/66



Shape-based morphology

Saliency maps from shape-based filterings

Input image. Saliency map.
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Some illustrations and applications
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Some illustrations and applications

A Topological Approach to Local Feature detection

Interest point detection

Find a set of interesting points: DoG, Corners, . . .

Find a scale associated to each point

Find interesting regions: MSER[Matas et al., BMVC, 2002]

stability functional τ : τ(Nk ) = (|N+
k | − |N−k |)/|Nk |.

|.|: cardinality; N+
k and N−k : resp. ancestor and descendant of node

Nk with a prefixed range of gray level compared with Nk .
Minima of τ are spotted as interesting regions.
Generalization: Any tree T , any attribute A can be used, and
the morphological closing in shape-space filters the meaningless
minima.
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Some illustrations and applications

A Topological Approach to Local Feature detection

Tree-Based Morse Regions (TBMR)

Min-tree Max-tree

A0 B1

G2

C0
D1

E4 F3

H4

Image
A C

A B C D

A B C D G

A B C D F G

G HA B C D E F

EH

E F

E F G H

B D E F G H

G HA B C D E F

Select critical nodes (leaves and nodes with several children)

The scale of a critical node is the largest region containing it and
topologically equivalent in its tree.
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Some illustrations and applications

A Topological Approach to Local Feature detection
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Some illustrations and applications

Shape-based lower/upper levelings

Input image.
Round objects based

upper-leveling.
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Some illustrations and applications

Shape-based lower/upper levelings

Difference of input image and the shape-based upper-leveling.
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Some illustrations and applications

Blood vessels segmentation in retinal images

Important idea

1 Use the green channel,

2 Black top-hat transform,

3 Extinction-based shape upper-leveling using circularity,

4 Preserved connected components are considered as blood vessels.

Tested images

DRIVE database: Digital Retinal Images for Vessel Extraction.

Performances measurements

1 Sensitivity and specificity : true positive and negative rate,

2 Accuracy: rate of pixels correctly classified,

3 kappa value: a statistical measure of inter-rater agreement.
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Some illustrations and applications

Blood vessels segmentation in retinal images

(a) Input color image. (b) Green channel. (c) Reversed black top-hat.

(d) Shape upper-leveling. (e) Our segmentation. (f) Manual segmentation.
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Some illustrations and applications

Blood vessels segmentation in retinal images

(a) Input image. (b) Input image. (c) Input image. (d) Input image.

(e) Segmentation.(f) Segmentation.(g) Segmentation.(h) Segmentation.

L. Najman: Shape Spaces 51/66



Some illustrations and applications

Blood vessels segmentation in retinal images

Benchmark on DRIVE database

Method Sensitivity Specificity Accuracy

2nd human observer 0.7761 0.9725 0.9473 (0.0048)

mendonça 0.7344 0.9764 0.9452 (0.0062)

Our 0.6924 0.9779 0.9413 (0.0078)

Benchmark on STARE database

Method Sensitivity Specificity Accuracy

2nd human observer 0.8949 0.9390 0.9354 (0.0171)

Our 0.7149 0.9749 0.9471 (0.0114)
mendonça 0.6996 0.9730 0.9440 (0.0142)

Remark

This is the result of only a “simple” filtering step.
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Some illustrations and applications

It also works in 3D:
Application to coronary arteries segmentation

Path opening followed by elongation-based filtering
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Some illustrations and applications

Optic nerve head (ONH) segmentation

Important idea

1 Use the red channel,

2 Classical morphological closing by a 2D disk,

3 Construct the tree of shapes and calculate a specific attribute
using the fuzzy theory,

4 The best filling ellipse of the node having the minimal
attribute is identified as the ONH.

Tested images

DRIONS database: Digital Retinal Images for Optic Nerve
Segmentation Database.

Performances measurements

Discrepancy.
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Some illustrations and applications

Optic nerve head (ONH) segmentation

(a) Input color image. (b) Red channel. (c) Results of closing

(d) Detected CC . (e) Segmented ONH. (f) Manual results.
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Some illustrations and applications

Optic nerve head (ONH) segmentation

(a) Input image. (b) Input image. (c) Input image. (d) Input image.

(e) ONHs. (f) ONHs. (g) ONHs. (h) ONHs.
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Some illustrations and applications

Optic nerve head (ONH) segmentation

Carmona 96%

Molina 95%

Our 93.6%

Lowell 80%

Percentage of images whose discrepancy is fair

Remark

This is the result of only a “simple” filtering step.
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Some illustrations and applications

Optic nerve head (ONH) segmentation

Our

Lowell

Carmona

Molina

Accumulated discrepancy results for our detection method
versus Carmona et al, Molina et al and Lowell et al.
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Some illustrations and applications

Hierarchical simplification based on Mumford-Shah

Mumford-Shah energy with cartoon model

ET =
∑

∂τ∈T

( ∑

p∈R(∂τ)

(
u(p)− u

(
R(∂τ)

))2
+ νL(∂τ)

)
.

Attribute

ν measures the simplification level.

Important idea

1 Construct the tree of shapes,

2 Weight each node with the simplification level ν,

3 The saliency map yields a hierarchical simplification.
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Some illustrations and applications

Hierarchical simplification based on Mumford-Shah

Original. Saliency map. Simplified.

L. Najman: Shape Spaces 55/66



Some illustrations and applications

Hierarchical simplification based on Mumford-Shah

Original. Saliency map. Simplified.

L. Najman: Shape Spaces 55/66



Some illustrations and applications

Hierarchical simplification based on Mumford-Shah

Original. Saliency map. Simplified.

L. Najman: Shape Spaces 55/66



Some illustrations and applications

Hierarchical simplification based on Mumford-Shah

Original. Saliency map. Simplified.

L. Najman: Shape Spaces 55/66



Some illustrations and applications

Hierarchical simplification based on Mumford-Shah

Original. Saliency map. Simplified.

L. Najman: Shape Spaces 55/66



Some illustrations and applications

Hierarchical simplification based on Mumford-Shah

Original. Saliency map. Simplified.
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Some illustrations and applications

Felzenswalb and Huttenlocher’s algorithm
[Felzenswalb & Huttenlocher], IJCV, 2004

1 Compute a minimum spanning tree (MST) of a dissimilarity,

2 For each edge ∈ MST linking two vertices x and y , in increasing
order of their weights:

(i) Find the region X that contains x ,
(ii) Find the region Y that contains y ,
(iii) Merge X and Y if

Diff (X ,Y ) < min{Int(X ) +
k

|X | , Int(Y ) +
k

|Y | }.

Question

Is k a scale parameter?
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Some illustrations and applications

Causality principle

A contour present at a scale k1 should be present at any scale
k2 < k1.

Not true with Felzenswalb and Huttenlocher’s algorithm.

Original. k = 7500 (8 regions). k = 9000 (14 regions).
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Some illustrations and applications

Application of our framework with attribute k

Answer

k is not a scale parameter.

Attribute from k

k = max
{(

Diff (X ,Y )− Int(X )
)
× |X |,

(
Diff (X ,Y )− Int(Y )

)
× |Y |

}
.
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Some illustrations and applications

Hierarchical image segmentation on BSDS500

Important idea

1 Calculate the distance between neighboring pixels,

2 Construct a minimum spanning tree (MST),

3 Compute attribute k,

4 The saliency map yields an hierarchical image segmentation.

Tested images

BSDS500: Berkeley Segmentation Data Set and Benchmarks 500.

Performance measurements

1 Ground-truth Covering [Arbeláez et al., PAMI, 2011],

2 Probabilistic Rand Index [Arbeláez et al., PAMI, 2011].
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Some illustrations and applications

Hierarchical image segmentation on BSDS500

Original. Saliency map. Segmentation(11 regions).
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Some illustrations and applications

Hierarchical image segmentation on BSDS500

Original. Saliency map. Segmentation(70 regions).
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Some illustrations and applications

Hierarchical image segmentation on BSDS500

Original. Saliency map. Segmentation(20 regions).
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Some illustrations and applications

Hierarchical image segmentation on BSDS500

Benchmarks

Our method obtains better results than the results of method of FH,
and of method of Guimarães for optimal dataset scale (ODS), and for
optimal image scale (OIS).

Method
GT Covering Prob. Rand. Index

ODS OIS Best ODS OIS

FH 0.43 0.53 0.68 0.76 0.79

Guimarães 0.46 0.53 0.60 0.76 0.81

Ours 0.50 0.57 0.66 0.77 0.82

Comparison of the hierarchical segmentation obtained with Felzenswalb and
Huttenlocher’s algorithm, method of Guimarães et al., and our method.
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Conclusion and perspectives

Conclusion

Object filtering

1 Encompass the state of art,

2 Shape-based lower/upper-levelings,

3 Morphological shapings.

Object detection

1 Context-based estimator,

2 Specific attribute A for ONH segmentation,

3 Saliency map.
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Conclusion and perspectives

Perspectives

Attributes A and AA,

Learning of the attributes,

Strategies of dealing with second tree T T ,

More Properties of the morphological shapings,

Saliency maps.
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Conclusion and perspectives

Learning Hierarchical Features for Scene Labeling
C. Farabet et al., PAMI 2013

 X1

 X2

 X3  F3

I 

convnet
 F1 

F2
F 

 f1 (X1;!1)

 f2 (X2;!2)

 f3 (X3;!3)

pyramid
g (I)

C1 C2 C3 C4

C6 C7

C9

C5

C8
segmentation

h (I)

labeling
l (F, h (I))

superpixels tree T,{Ck}

or

The model
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Conclusion and perspectives

Learning Hierarchical Features for Scene Labeling
C. Farabet et al., PAMI 2013

class predictionsF 

classifier
2 layer - mlp

average 
across
super-
pixels

superpixels

argmax

Labeling with super-pixels
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Conclusion and perspectives

Learning Hierarchical Features for Scene Labeling
C. Farabet et al., PAMI 2013

class predictions

F 

classifier
2 layer - mlp

energy 
minimization in 
the graph via 
α-expansion

I 

image gradient

unary weights

pairwise weights

average 
across super 

pixels

Labeling with a CRF regularization
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Conclusion and perspectives

Learning Hierarchical Features for Scene Labeling
C. Farabet et al., PAMI 2013

 {Ok}

optimal cover

F  

T,{Ck}

C1 C2 C3 C4

C6 C7

C9

C5

C8

 T,{dk,Sk}^

S1 S2 S3 S4

S6 S7

S9

S5

S8

{dk*(i),Sk*(i)}

S1 S2 S3 S4

S6 S7

S9

S5

S8

^

masking/pooling 
a (Ck,F)

classifier 
c (Ok;𝛉c)

labeling
l (F,T,{Ck})

Labeling with an optimal cover tree
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Conclusion and perspectives

Learning Hierarchical Features for Scene Labeling
C. Farabet et al., PAMI 2013

C7

C5 C6

C1 C2 C3 C4
min min min min

0.8

.3 .5

.2 .4 .2 .1

Optimal cover:

{C1, C3, C4, C5}

The optimal cover tree
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Conclusion and perspectives

Learning Hierarchical Features for Scene Labeling
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Conclusion and perspectives

Thank for your
attention !

Pink: http://pinkhq.com
Olena: http://www.lrde.epita.fr/cgi-bin/twiki/view/Olena
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